
Math 525 Algebraic topology I. Spring 2024. Igor Mineyev
Homework, topics, and fun.

Below, “∗” means “turn in”, “no ∗” means “do not turn in, but know how to solve”. If a text
is in yellow color, the homework is still at a preliminary stage and might be modified later, but
feel free to start working on it. The problems marked “for extra fun” are some interesting
related problems; they will not affect your grade for the course, but should be good sources of
inspiration. I will also include a list of topics.

• As part of the ongoing IG3OR′S group, please feel free to join our weekly mini-seminar
on Zoom in Spring 2024 (the meeting number and password were given in class). We
meet each Tuesday at 9.30am. Xianhao An, Jihong Cai and Leslie Hu will present
various articles by Akio Kawauchi that claim to have solved several long-standing open
problems in topology/geometric group theory. Feel free to read the articles as well and
try to find mistakes, if any.

Topics: Algebra and topology, metric space, topology, open sets, closed sets, topological space,
examples of topological spaces, continuous function (= map), homeomorphism; constructing
new topological spaces: subspace topology, the topology of disjoint union, product topology,
quotient topology, saturated sets; balls and cubes in Rn, disk Dn, boundary of a disk, manifold,
sphere Sn, torus T n, projective plane RP 2 (3 definitions), projective space RP 2, examples of
surfaces, attaching map, cell complex (= CW-complex), weak topology, cell=open cell eni , ...
Homework 1. Due Friday, January 26, Friday. Handwritten, stapled, due at the
beginning of the class.

(1) Show that the open unit disc in Rn (= the interior of Dn) is homeomorphic to Rn.
(2*) Prove that RP2 is a manifold. (Do not forget “Hausdorff”.)
(3*) Let X be the result of collapsing ∂D2 in the disk D2 to a point, with the quotient

topology. Prove that X is homeomorphic to S2.
(4*) Give three different definitions of the projective plane RP2 (as in class). Prove that

they give the same topological space (i.e. they are homeomorphic).
(5) Show that (−∞, 0] and R (with their usual topology) are not homeomorphic.
(6) The rest of problems have been moved to the next homework for the lack of time this

week.

For extra fun:

• Give a reasonable definition of the topological spaces S∞ and RP∞.

Topics: Each characteristic map Φi is continuous, cellular structures on Sn and RPn, paths
and loops in a topological space, homotopy of maps, path homotopy, path homotopy is an
equivalence relation, concatenation of paths, loops, fundamental group, π1(Rn), path-connected
topological space, simply connected, change of basepoint, the fundamental group of a cartesian
product (for arbitrary spaces), Sn is simply connected for n ≥ 2, π1(S1), a covering space, a
lift of a path, existence of a lift of a path, existence of a lift of a path homotopy, invariance
of π1 under homeomorphisms (hw), connected topological space, connected component of a
topological space, path-connected component, ...
Homework 2. Due on Friday, February 2.

(1) Section 1.1, The fundamental group: Basic constructions, p. 38: # 5*. (Make sure to
turn in this problem since it is marked with “*”. Note that π1 is defined by homotopy
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preserving endpoints, but a homotopy of maps S1 → X is not required to preserve a
basepoint.)

(2) Show that path homotopy is an equivalence relation on the set of paths in a topological
space X.

(3) Prove that the fundamental group is homeomorphism-invariant, i.e. if (X, x0) and (Y, y0)
are homeomorphic pairs, then π1(X, x0) ∼= π1(Y, y0).

(4*) Prove that a subset A in a cell complex X (with the weak topology) is open (closed)
in X if and only if for each characteristic map Φn

i : Dn
i → X, the set (Φn

i )−1(A) is open
(closed) in Dn

i . [See p. 519.]
(5*) Show that any path-connected topological space is connected. Show that if a topological

space is connected and locally path-connected, then it is path-connected. (Hint: Use
connected components and path-connected components.)

(6*) Prove that a cell complex is connected if and only if it is path connected. [Hint: First
show that any cell complex is locally path connected. See p. 523.] More generally, show
that for any cell complex X, its connected components and path components agree.

(7) Section 1.1, The fundamental group: Basic constructions, p. 38: # 2, 3, 10*, 11, 14*.
(8) Given topological spaces X and Y , prove that the standard projections X × Y → X

and X × Y → Y are continuous.
(9) Learn the proof that π1(S1) ∼= Z, p. 29-31.

For extra fun:

(1)

Describe, as precisely as possible, the fundamental group of the waste
basket. (This one is from my office.) The same question for the surface
of this wastebasket. What is the genus of this surface?

(2) Trace the definition of cell complex X to define the surjective function tn,iDn
i � X.

Deduce from the above exercises that the weak topology on X is the same as the quotient
topology induced by this function.

Topics: Induced homomorphism, composition of induced homomorphisms, a retraction of X
onto A, r : X � A and rA : X → X, a retract of X, no retraction from D2 onto ∂D2 = S1,
Brouwer fixed-point theorem, (strong) deformation retraction of X onto A, a deformation
retract of X, deformation retraction implies isomorphism in π1, Moebius band, homotopy
equivalence, contractible space, invariance of π1 under homotopy equivalence (p. 37), wedge of
(pointed) topological spaces, the fundamental theorem of algebra, ...
Homework 3. Due on Friday, February 9.

(1*) Is the sphere S2 homeomorphic to the torus T 2? Generalize to Sn and T n for n ≥ 2.
(2) Suppose r : X → Y is a retraction and x0 ∈ Y . Show that the homomorphism r∗

induced by r on the fundamental groups (at x0) is surjective. If ι : Y ↪→ X is the
inclusion map, prove that the induced homomorphism ι∗ is injective. (See p.36)

(3) Section 1.1, The fundamental group: Basic constructions, p. 38: # 16*, 18*.
(4) Prove that if Y is a deformation retract of X, then X and Y are homotopy equivalent.
(5) A topological space X is contractible if X is homotopy equivalent to the topological

space {pt} consisting of one point. Deduce that if X deformation retracts to a point,
then it is contractible.

(6) About homotopy equivalence and deformation retractions, chapter 0, p. 18: #1, 2,
5*, 6a*, 6b*. [Hint for problem 5: use the product topology and compactness of the
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interval [0, 1].] [The fact that homotopy equivalence is an equivalence relation can be
used without proof if needed. This will be an exercise in the next homework.]

For extra fun:

• The Poincaré conjecture says that any closed simply connected 3-dimensional manifold
is homeomorphic to S3. Find and read its proof. (It is quite hard.) Give a different,
shorter proof.
• Pick a particular cell complex X. Deform it until it is unrecognizable to obtain a cell

complex Y . Prove that X is homotopy equivalent to Y . Repeat.

Topics: Free group is a group, reduced word over a family of groups {Gα}, free product
(associativity by representing by permutations, injective L : W → SW ), the universal property
of the free product, the kernel of a homomorphism, the first isomorphism theorem for groups,
iα : Aα → ∪αAα = X, jαβ : Aα ∩ Aβ → Aα, the van Kampen theorem (proof by switching
designation between parts), relation to pushouts.
Homework 4. Due on Friday, February 16. There is discrepancy between the published
textbook and the newer file for the textbook available online. Whenever this happens, always
use the file.

(1) About homotopy equivalence, chapter 0, p. 18: # 3a*. Prove that homotopy equivalence
is an equivalence relation. (It is on the class of topological spaces, not on a set.)

(2) Prove that if X and Y are path-connected topological spaces and ϕ : X → Y is a
homotopy equivalence, then the induced homomorphism ϕ∗ : π1(X, x0) → π1(Y, ϕ(x0))
is an isomorphism for any choice of x0 ∈ X. (See p. 28 and 37 for an arbitrary homotopy
equivalence.)

(3) Learn the proof of the van Kampen theorem, p. 43-46. The main principle: switching
from one part to another. Construct partitions either explicitly or using Lebesgue
numbers.

(4*) Prove in two ways that the fundamental group of a finite connected graph X (= finite
path-connected cell complex of dimension at most 1) is a free group. The first way:
construct a homotopy equivalence between X and a wedge of finitely many circles. The
second way: use the van Kampen theorem directly. (All this can actually be generalized
to arbitrary connected graphs.)

(5*) A closed surface is a compact surface without boundary. Describe some examples (at
least three) of surfaces that are compact and have boundary. Describe some examples
(at least three) of surfaces that are not compact and have no boundary. For each of these
examples, show that it is homotopy equivalent to a graph. What are the fundamental
groups of these surfaces?

(6) The van Kampen theorem: applications to cell complexes, section 1.2, p. 52: # 2, 3*,
4*, 7*, 16*. If you claim that a space is path-connected, provide reasoning.

For extra fun:

(a) Come up with a more geometric/topological proof of associativity of the free product
of two groups G ∗ H using the wedge of two spaces X ∨ Y , where π1(X) ∼= G and
π1(Y ) ∼= H, and using the universal covering of X ∨ Y . (It might be easier to first do
this in the special case when both X and Y are wedges of circles.)

(b) Count the number of cells in each dimension of the standard cellulation of T 3. Then do
this for T n.
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(c) Pick your favorite manifold, construct a cellular structure on it, count the number of
cells in each dimension. Find most efficient cellulations of this manifold, or at least as
efficient as possible.

(d) Do (b) and (c) for triangulations.
(e) A handlebody is an orientable surface embedded in R3 together with “its inside”. A Hee-

gard decomposition of a 3-manifold is its realization as a union of two copies of the same
handlebody glued together along their boundary surfaces via some homeomorphism of
the surface. Describe such a decomposition of S3 into two 3-balls. Also a decomposition
into two solid tori (S1 ×D2). Also into two pretzels (whose boundary is the surface of
genus 2). What is the fundamental group of a handlebody? State clearly what the van
Kampen theorem says for each of the above decompositions.

(f) Can one use this purely algebraic statement to prove the Poincaré conjecture? (The
only proof known so far uses differential geometry.)

Topics: A ∗ 1 ∼= A, applications of the van Kampen theorem: π1(Sn) for n ≥ 2 (again), the
fundamental group of wedge sum, of a wedge of circles, attaching 2-cells to spaces, attaching
n-cells for n ≥ 3, the induced homomorphism of X(2) ↪→ X (using properties of cell complexes
below), fundamental groups of arbitrary complexes, group presentations, presentation complex,
any group is a fundamental group, presentations of the fundamental groups of closed surfaces,
connected sum, cell structures on surfaces (closed orientable of genus g, closed non-orientable of
genus g), surfaces N1 and N2, distinguishing (homotopy types of) closed surfaces by orientation
and genus, ...
Know before Exam 1 on Friday, February 23.

(1) The van Kampen theorem: applications to cell complexes, section 1.2, p. 52: # 8. If
you claim that a space is path-connected, provide reasoning. [Hint for # 8: One can
use the van Kampen theorem here, but it is easier to use cartesian products.]

For extra fun:

• Knots. A knot is a smooth or piecewise linear embedding of the circle S1 into R3.
Denote K the image of such an embedding. By the fundamental group of a knot K we
mean the fundamental group of the knot complement, π1(R3 \ K). Describe in detail
the Wirtinger presentation for the fundamental group of any knot K.
(See exercise 22, page 55.)
• Define the notion of an orientation on a manifold. For Riemannian manifolds, this can

be done using the riemannian structure. For triangulated manifolds, use the simplicial
structure. For topological manifolds, use relative singular homology.

Topics: Cell (=open cell), subcomplex (two definitions and their equivalence), subcomplex is
a complex (use hw), compact subsets of cell complexes, finite complex, constructing neighbor-
hoods in cell complexes, cell complexes are Hausdorff (and even normal), Two definitions of a
subcomplex, the closure of an n-cell in X(n) equals the image of the characteristic map, compact
subsets of cell complexes, covering spaces, a lift of a map (to a covering space), path lifting
property, homotopy lifting property, homomorphism induced by a covering, covering spaces
and subgroups (relation between topology and group theory, subgroups of free groups), locally
path-connected spaces, lifting criterion for groups, asphericity of S1.
Homework 5. Due on Friday, March 1. Starting from this homework, the assignments
will be due on Learn@Illinois: look for “MATH 525 F1 SP24: Algebraic Topology I (Mineyev,
I)”. Please write by hand, either on paper or on a pad. Submit any time before the beginning
of the class on Friday.
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(1) Let A be a subcomplex of a cell complex X. (With the first definition of a subcomplex.)
Prove inductively that the topology on A ∩ X(n) induced from X and the topology
induced on A ∩ X(n) by inductively attaching cells of dimensions 0, 1, 2, . . . , n are the
same. (p.520. This is used to prove that a subcomplex is a complex.)

(2) Prove that any cell complex is Hausdorff (with respect to the weak topology). See
p. 522, fill out details.

(3) Show that for any n-cell en in a cell complex X, the closure of en in X(n) is the same as
the closure of en in X.

(4) Show that for any cell complex X and any n, X(n) is closed in X. Deduce that X(n) is
a subcomplex of X.

(5*) Show that abelianization homomorphisms αG : G→ Gab commute with quotient homo-
morphisms in the following sense. If G is a group, R is a subset of G and 〈〈R〉〉G is the
subgroup of G normally generated by R, denote H := G/〈〈R〉〉G and let qR : G→ H be
the quotient homomorphism. Then the following diagram commutes:

G

qR
����

αG // // Gab

qαG(R)
����

H
αH // // Hab

qαG(R) here means the quotient map of Gab by the subgroup normally generated by
the subset αG(R) ⊆ Gab. (Since Gab is abelian, “normally generated” is the same as
“generated”.) This was used to distinguish surfaces of different genera (orientable and
nonorientable). (Here is a more precise definition of the function qαG(R)

. It is the function

induced by qR. Specifically, for each y ∈ Gab, take any x ∈ G such that αG(x) = y.
Then let qαG(R)(y) := αH ◦ qR(x). Check that this is a well-defined function, and is a
homomorphism. Then check that the kernel of qαG(R) is the normal subgroup of Gab

normally generated by the set αG(R).)
(6*) Let Fn be the free group of rank n with basis {x1, . . . , xn}. Prove that an element

xm1
i1
. . . xmkik of Fn, where each xij is an element of the basis, belongs to the commutator

subgroup F ′n if and only if, for each i ∈ {1, . . . , n}, the sum of exponents of xi occurring
in xm1

i1
. . . xmkik is zero. (Hint: Use the identity ba[a−1, b−1] = ab.)

(7*) Use (6) to show that the abelianization of Fn is Zn.
(8) Describe how (5) and (7) are useful for computing abelianizations of groups that are

given by presentations.

For extra fun:

• What would you mean by a cubical cell complex? Try to define it. Look up for a
precise definition. What would it mean for a cubical complex to be (locally or globally)
positively curved?
• Given an orientable surface M , how would you associate, in a natural way, a cubical

complex to it, with an action by π1(M) on it?
• Similarly, given a hyperbolic 3-manifold M , how would you associate a cubical complex

to it, with an action by π1(M)?
• Many problems in 3-dimensional manifold theory have been solved relatively recently

using cubical complexes. The virtual fibering conjecture, etc. How would you use
cubical complexes to do it?
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Topics: Lifting criterion (for spaces), the unique lifting property, universal covering, semi{locally
simply connected} space, existence of universal coverings (hw), existence of a covering for a
given subgroup of π1(X).
Homework 6. Due on Friday, March 8.

(1) Learn the proof of the homotopy lifting property for arbitrary covering spaces. It is the
same as in the proof of the isomorphism π1(S1) ∼= Z.

(2) Learn the proof of the existence and uniqueness of the universal covering space.
(3*) Give an explicit description of a covering space of the wedge of two circles, S1 ∨ S1,

that is contractible. Describe the covering projection map and prove that it is indeed a
covering space.

(4) Find the universal covering of the projective plane RP2. Generalize to RPn for n ≥ 2.
(5) Covering spaces, section 1.3, p.79: # 1, 2*, 3, 4*, 7*, 9*.
(6) Learn the proof of the classification theorem for covers, p. 67.
(7) Let p : X̃ → X be a covering space, Y be a path-connected space, f : Y → X be a

constant map. Prove that any lift of f to X̃ is a constant map.

For extra fun:

• Pick a particular cell complex X, for example a finite graph. Construct a covering X̃
of this complex. Find a generating set for π1(X̃) and describe it in terms of loops in X̃.
Construct another cover of X, find a generating set. Repeat.
• Which 2-dimensional complexes are aspherical?
• Be the first one to prove or disprove the Whitehead conjecture: any subcomplex of any

aspherical 2-dimensional cell complex is aspherical. (See also the articles by Kawauchi;
either confirm the proof or find a mistake.)

Topics: Maps of covering spaces, isomorphism of covering spaces, uniqueness of covering spaces
(for a given subgroup), the classification of covering spaces, uniqueness of a universal covering
space, regular covering (= normal covering), deck transformation (= automorphism of a cover-
ing space), G(X̃), group actions, the action of G(X̃) on X̃, a regular cover, the characterization
of regular covers, G(X̃) ∼= N(H)/H, Cayley graph (hw), deck transformations are uniquely de-
termined by (their value at) one point (i.e. the action is free), orbit space (=quotient space),
regular covers arising from group actions, subgroups of free groups (Schreier subgroup theorem
or Nielsen-Schreier subgroup theorem).
Homework 7. Due on Friday, March 29, before 2 p.m.

(1) Find all the deck transformations for the coverings in problems (3) and (4) in the
previous homework.

(2*) Let 〈S|R〉 be a presentation of a group G. Consider the following two graphs
(= 1-dimensional cell complexes) G and G ′.
(a) The Cayley graph for the generating set S of G is the graph G whose vertices vg

one-to-one correspond to the elements g ∈ G and edges eg,s one-to-one correspond
to the elements (g, s) ∈ G × S; the left end of each edge eg is attached to vg and
the right end to vgs.

(b) Let XS,R be the presentation complex for the presentation 〈S|R〉 (that is one vertex,
one edge for each s ∈ S, and one 2-cell for each r ∈ R), and let G ′ be the 1-skeleton
of the universal cover X̃S,R of XS,R.
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We know that π1(XS,R) ∼= G. Prove that the graphs G and G ′ are isomorphic (or,
equivalently, homeomorphic as cell complexes). [Hint: First extend the Cayley graph G
to the Cayley complex, see page 77. Then use the uniqueness of universal covers.]

(3) Covering spaces, section 1.3, p.79: # 14*, 16*, 17*, 18*, 19* (only first two parts).
(In 16, if X is empty and Y is not empty, then one can construct an example such
that X → Z is normal, but Y → Z is not normal. Also, if we allow Y to not be
path-connected, one also can construct an example such that X → Z is normal, but
Y → Z is not normal. To fix this – and for simplicity – assume in exercise 16 that each
of the spaces X, Y , Z, is nonempty and path-connected. In 16, the assumption of being
locally path-connected does seem to be necessary. It should be used to show that the
image of a basic neighborhood in X is exactly some basic neighborhood in Y .
In 17, make sure to describe X and X̃, and check the rest of conditions.
In 18, it is not explained precisely what is meant by saying that “one covering of X is
a covering of another covering of X”. Here is the precise definition: given two covering
spaces p1 : X1 → X and p2 : X2 → X of the same space X, we say that p1 is a covering
of p2 if there is a covering map r : X1 → X2 such that p1 = p2 ◦ r. (This can be restated
as commutativity of the diagram with p1, p2 and r.)
In 19, prove only the first two parts, skip the last sentence about embedding of Mg

to T 3.)
(4) Let X be a path-connected, locally path-connected, and semilocally simply-connected

space with a basepoint x0, and H ≤ π1(X, x0). Then there exists a covering space with
a basepoint, pH : (XH , xH0)→ (X, x0), that realizes H, that is, pH∗(π1(XH , xH0)) = H.

The proof of this in the textbook is a bit sketchy, a somewhat more detailed proof is
outlined below. Fill in the details.

First construct a universal cover as before, that is,

X̃ := {[γ] | γ is a path in X starting at x0}.

Define a relation ∼H on X̃ by

[γ] ∼H [γ′] ⇔ γ(1) = γ′(1) and [γγ′] ∈ H.

(One can check that this equivalence relation can be equivalently described by the orbits
of a specific H-action on X̃, by lifting paths, that will be described below.) Check
that ∼H is an equivalence relation and let XH := X̃/∼H . An element in XH is an
equivalence class [[γ]]H . If c is the constant path at x0 in X, we let x̃0 := [c] ∈ X̃ and
xH0 := [[c]]H ∈ XH be the basepoints.

Define the projections

(X̃, x̃0)
p̃→ (XH , xH0)

pH→ (X, x0)

by p̃([γ]) := [[γ]]H and pH([[γ]]) := γ(1), check that they are well-defined and their
composition is p. Prove that p̃ and pH are covering spaces. The main point is that for
any two basic neigborhoods U[γ] and U[γ′] (path-connected, from the construction of X̃),
their projections to XH , p̃(U[γ]) and p̃(U[γ′]), are either disjoint or coincide. The space
XH (together with the projections p̃ and pH) is called an intermediate cover for the
cover p.

Next check that the covering space pH : (XH , xH0) → (X, x0) indeed realizes the
subgroup H, that is, pH∗(π1(XH , xH0)) = H. This is proved by the following argument.
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Let γ be any loop in X at x0, γH be its lift at xH0 in XH , and γ̃ be the lift of γH at
x̃0 in X̃. Directly construct a lift γ̃′ of γ starting at x̃0 in X̃ as follows. For t ∈ [0, 1]
let γt : [0, 1] → X be the initial part of γ reparameterized linearly by the unit interval
[0, 1]. Let γ̃′(t) := [γt] ∈ X̃. (γ̃′ is a path, not necessarily a loop.) Check that γ̃′ is a lift
of γ that starts at x̃0, then by the uniqueness of lifts, γ̃′ = γ̃. In particular, γ̃′ is a lift
of γH .

The equality pH∗(π1(XH , xH0)) = H follows from the equivalences (prove them):
for any element [γ] ∈ π1(X, x0),

[γ] ∈ pH∗(π1(XH , xH0))

⇔ ∃ a loop γ′H in XH at xH0 such that γ is path-homotopic to the loop pH ◦ γ′H
⇔ the lift of γ at xH0 in XH is a loop

⇔ γH is a loop (at xH0 in XH)

⇔ γH(0) = γH(1) (since γ̃′ is a lift of γH)

⇔ p̃ ◦ γ̃′(0) = p̃ ◦ γ̃′(1) ⇔ p̃([γ0]) = p̃([γ1])

⇔ p̃([c]) = p̃([γ]) ⇔ [[c]]H = [[γ]]H

⇔ [γ] ∼H [c] ⇔ [γc] ∈ H ⇔ [γ] ∈ H.

(5) The description of the group of deck transformations for any path-connected covering
(Proposition 1.39, p. 71):
Let X be a path-connected, locally path-connected space, p : (X̃, x̃0)→ (X, x0) be a path-
connected covering, and let H := p∗(π1(X̃, x̃0)) ≤ π1(X, x0). Then:
(a) The covering p is regular ⇔ the subgroup H is normal in π1(X, x0).
(b) The group of deck transformations G(X̃) = G(X̃, p) is isomorphic to N(H)/H,

where N(H) is the normalizer of H in π1(X, x0).
The proof in the book is confusing and convoluted, a more structured proof is provided

below.
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Proof. (a) Since X is locally path-connected, then X̃ is locally path-connected as well.
Prove the following equivalences:

the covering p is regular (wrt definition 1) (since X̃ is path-connected)

⇔ the covering p is regular wrt definition 2

⇔ ∀ x̃, x̃′ ∈ p−1(x0) ∃ g ∈ G(X̃) such that g(x̃) = x̃′

⇔ ∀ x̃1 ∈ p−1(x0) ∃ g ∈ G(X̃) such that g(x̃0) = x̃1

(by the corollary of the lifting criterion, Prop. 1.37, p. 67, proved in class)

⇔ ∀ x̃1 ∈ p−1(x0) p∗(π1(X̃, x̃0)) = p∗(π1(X̃, x̃1))

⇔ ∀ x̃1 ∈ p−1(x0) ∀ path γ̃ from x̃0 to x̃1 in X̃ p∗(π1(X̃, x̃0)) = p∗([γ̃]−1π1(X̃, x̃0)[γ̃])

⇔ ∀ x̃1 ∈ p−1(x0) ∀ path γ̃ from x̃0 to x̃1 in X̃ H = [p ◦ γ̃]−1H[p ◦ γ̃]

(by path-lifting, since X̃ is path-connected)

⇔ ∀ loop γ at x0 in X H = [γ]−1H[γ]

⇔ ∀ g ∈ π1(X̃, x0) H = g−1Hg

⇔ H is normal in π1(X, x0).

(b) Define ϕ : N(H) → G(X̃) by lifting loops as follows. For each [γ] ∈ N(H) ≤
π1(X, x0), lift the loop γ to a path γ̃ at x̃0 in X̃, then let ϕ([γ]) be the deck transforma-
tion of X̃ sending x̃0 = γ̃(0) to x̃1 := γ̃(1). Such a deck transformation exists, because
p(x̃1) = p(γ̃(1)) = γ(1) = x0, so x̃1 ∈ p−1(x0), and as above,

[γ] ∈ N(H) ⇔ H = [γ]−1H[γ] ⇔ H = [p ◦ γ̃]−1H[p ◦ γ̃]

⇔ p∗(π1(X̃, x̃0)) = p∗([γ̃]−1π1(X̃, x̃0)[γ̃])

⇔ p∗(π1(X̃, x̃0)) = p∗(π1(X̃, x̃1)) (by the corollary of the lifting criterion)

⇔ ∃ g ∈ G(X̃) such that g(x̃0) = x̃1.

For each [γ] ∈ N(H), such a deck transformation g is unique because the endpoint γ̃(1)
is independent of the choice of representative γ in the path-homotopy class [γ] in X,
and by the uniqueness of lifting property (since X̃ is connected).

To show that ϕ is surjective, for any g ∈ G(X̃) first choose a path γ̃ from x̃0 to x̃1 :=
g(x̃0), then let γ be its projection, that is, γ := p◦ γ̃. Since g is the deck transformation
sending x̃0 to x̃1 = g(x̃0), the same equivalences above show that [γ] ∈ N(H). Since
g is the deck transformation sending x̃0 = γ̃(0) to x̃1 = γ̃(1), then ϕ([γ]) = g, which
proves surjectivity of ϕ.

Next prove that ϕ is a homomorphism. Given any [γ], [γ′] ∈ N(H), by the definition
of ϕ,
• τ := ϕ([γ]) is the deck transformation sending x̃0 to γ̃(1), where γ̃ is the lift of γ

at x̃0 in X̃,
• τ ′ := ϕ([γ′]) is the deck transformation sending x̃0 to γ̃′(1), where γ̃′ is the lift of
γ′ at x̃0 in X̃,
• τ ′′ := ϕ([γ][γ′]) = ϕ([γ · γ′]) is the deck transformation sending x̃0 to γ̃′′(1), where
γ̃′′ is the lift of the concatenation γ · γ′ at x̃0 in X̃.
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We want to show that τ ′′ = τ ◦ τ ′. The path γ̃′′ is a lift of γ · γ′, and the concatenation
γ̃ · (τ ◦ γ̃′) is also a lift of γ · γ′ because

p ◦ (γ̃ · (τ ◦ γ̃′)) = (p ◦ γ̃) · (p ◦ τ ◦ γ̃′) = (p ◦ γ̃) · (p ◦ γ̃′) = p ◦ (γ̃ · γ̃′) = γ · γ′.
The two lifts start at the same point x̃0, hence by the uniqueness of lifts, γ′′ = γ̃ ·(τ ◦ γ̃′).
The deck transformation τ ′′ sends x̃0 to γ̃′′(1) = γ̃ · (τ ◦ γ̃′)(1) = (τ ◦ γ̃′)(1) = τ(γ̃′(1)).
The deck transformation τ ◦τ ′ also sends x̃0 to τ(γ̃′(1)), because τ ′ sends x̃0 to γ′(1) and
τ sends γ′(1) to τ(γ′(1)). By the uniqueness of lifts (since X̃ is connected), we conclude
that τ ′′ = τ ◦ τ ′, so ϕ is a homomorphism.

Finally, we describe the kernel of ϕ: for any [γ] ∈ N(H) ≤ π1(X, x0),

[γ] ∈ Kerϕ ⇔ ϕ([γ]) = id

⇔ the lift of γ at x̃0 in X̃ is a loop

⇔ [γ] ∈ p∗(π1(X̃, x̃0)) ⇔ [γ] ∈ H.

Therefore, the lifting of loops induces an isomorphism G(X̃) ∼= N(H)/H. �

(6) We emphasize that, by the proof above, the action of N(H)/H on X̃ is defined by lifting
loops to paths at x̃0.
If, in addition, p : (X̃, x̃0) → (X, x0) is a regular covering, then G(X̃) is isomorphic
to π1(X, x0)/H. If, in addition, p is a universal covering, then G(X̃) is isomorphic to
π1(X, x0).
In both cases, π1(X, x0) acts on X̃ by lifting loops to paths.

For extra fun:

• Provide a more conceptual proof of the existence of a covering (XH , xH0)→ (X, x0) for
any given subgroup H ≤ π1(X, x0). First construct the universal covering p : (X̃, x̃0)→
(X, x0), then define an action of H on X̃ by homeomorphisms using lifts of paths. Prove
that the space XH := X̃/∼H constructed in (4) is the same as the quotient of X̃ by the
H-action. That is, the equivalence classes in X̃ are the same as the H-orbits in X̃.

Topics: A triangulation of a manifold, simplex, face (two interpretations: set and map, face
maps ∆n−1 → ∆n), restriction to a face, ∆-complex, each ∆-complex gives rise to a (particular)
cell complex (without proof), simplicial chain, simplicial complex, taking the boundary of a
manifold twice, the standard open simplex, an open simplex in a ∆-complex, the chain complex
Csimp
∗ (X) := ∆∗(X) := Z[Σsimp

∗ (X)], ∂ ◦ ∂ = 0, simplicial homology H∆
n (X) of a ∆-complex, a

chain complex, the chain complex C∗(X) = Csing
∗ (X), singular homology Hn(X) = Hsing

n (X) of
a topological space X, cycles and boundaries, homology of a point (hw), homology of a disjoint
union.
Homework. To know before Exam 2 on Friday, April 5.

(1) What is the fundamental group of the projective plane RP 2? Prove the answer. What
is the fundamental group of the projective plane RP n for n ≥ 1?

(2) Learn examples 2.2-2.5 for simplicial homology, pp. 106-107.

Topics: Chain map f∗ between chain complexes, f ; f∗ ; f∗∗, exact sequence, short ex-
act sequence, the long exact sequence induced by a short exact sequence of chain complexes
(hw), the chain complex for a pair (X,A), C∗(X,A), the short exact sequence of chain com-
plexes for any pair (X,A), relative homology H∗(X,A), the corresponding long exact sequence
(involving H∗(A), H∗(X), H∗(X,A)), the reduced singular homology H̃∗(X) for nonempty X
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(similarly reduced simplicial homology), reduced relative homology H̃∗(X,A) for nonempty A,
H̃∗(X,A) ∼= H∗(X,A) for nonempty A, the long exact sequence for reduced relative homology
(involving H̃∗(A), H̃∗(X), H̃∗(X,A)), one long exact sequence for a good pair (X,A) (only
for reduced homology H̃∗(A), H̃∗(X), H̃∗(X/A); proof will come later after excision), subcom-
plexes form good pairs (without proof), chain homotopy between chain maps, homotopy induces
chain homotopy, f ∼ g ⇒ f∗ ∼ g∗ ⇒ f∗∗ = g∗∗ (the maps induced on singular homology by
homotopic maps coincide).
Homework 8. Due on Friday, April 12.

(1) Compute the 0th (singular) homology of any topological space X, H0(X) = H0(X;Z).
(See Proposition 2.7, p. 109.)

(2) Prove that for nonempty X, Hsing
0 (X) ∼= H̃sing

0 (X)⊕Z. (The first isomorphism theorem
is not enough here.)

(3*) Give a full proof that each short exact sequence of chain complexes

0→ A∗ → B∗ → C∗ → 0

gives rise to a long exact sequence of homology groups Hn(A∗), Hn(B∗), Hn(C∗).
(The best is not to look in the book, at least first; do it first as an exercise on your own.
In the book this is explained on pages 116–117.)

(4) Compute the (singular) homology groups of a point. Compute the reduced homology
groups of a point.

(5) Simplicial and singular homology, section 2.1, p. 131: #4, 5*, 7*. (For # 7 make an
educated guess how to glue the 3-simplex to obtain the 3-sphere, without proof. Then
compute simplicial homology. For extra fun: Prove that the result of gluing is indeed
topologically the 3-sphere. Also, is the result of this (combinatorial) gluing a ∆-complex?
Is it a simplicial complex?)

Topics: Chain homotopy equivalence of chain complexes, X ∼ Y ⇒ C∗(X) ∼ C∗(Y ) ⇒
H∗(X) ∼= H∗(Y ) (homotopy invariance of singular homology), Hn(tiXi) ∼= ⊕iHn(Xi), homol-
ogy and path components (not for reduced homology),
four applications of long exact sequences: Hn(X, x0) ∼= H̃n(X, x0) ∼= H̃n(X), homology of
spheres (reduced and otherwise), no retraction from Dn to ∂Dn, the Brouwer fixed-point the-
orem for Dn;
the degree of a map Sn → Sn, the statement of the excision theorem (for relative singular
homology).
Homework 9. Due on Friday, April 19.

(1) Learn the rest of the proof that homotopy leads to chain homotopy (prism operator) and
then to isomorphism in homology, f ∼ g ⇒ f∗ ∼ g∗ ⇒ f∗∗ = g∗∗. See Theorem 2.10,
pp. 111-112.

(2) Simplicial and singular homology, section 2.1, p. 131: #11*, 12*, 13*, 23.
(3*) Write a full proof that for any path connected topological space X, H1(X) is (isomorphic

to) the abelianization of π1(X). (Try to do this without looking in the book first. There
is a proof on pp. 166-167.) This statement is part of what is known as the Hurewicz
theorem.

Topics: The cone-off map b : LCn(Y )→ LCn+1(Y ) (for b ∈ Y , Y convex in Rk), the barycenter
of a linear simplex, the barycentric subdivision of a linear simplex, the proof of the excision
theorem, HU∗ (X) ∼= H∗(X) (i.e. H∗(X) is isomorphic to the homology using arbitrarily small
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singular simplices in X), the barycentric subdivision of a linear chain (in LCn(Y )), the barycen-
tric subdivision of a singular chain (in Cn(X)), the cone-off map b : LCn(Y ) → LCn+1(Y ) is
a chain homotopy between id∗ and 0∗ (this is not called a contracting homotopy), the sub-
division maps S∗ : LC∗(Y ) → LC∗(Y ) and S∗ : C∗(X) → C∗(X) are chain maps, the chain
homotopy T∗ between S∗ and id∗ : LC∗(Y ) → LC∗(Y ), the chain homotopy T∗ between S∗
and id∗ : C∗(X) → C∗(X), the chain homotopy between Sm∗ and id∗, subdivision of linear
n-simplices shrinks the diameter by n

n+1
, the Lebesque number of an open cover (of a compact

metric space), the long exact sequence of a triple (X,A,B) (involving H∗(A,B), H∗(X,B),
H∗(X,A); none for reduced homology), the proof of Hn(X,A) ∼= H̃n(X/A) for good pairs,
Hi(D

n, ∂Dn) ∼= H̃i(D
n, ∂Dn) ∼= H̃i(S

n), the proof of the long exact sequence for a good pair
(X,A) (involving H̃n(X/A)).
Homework 10. Due on Friday, April 26.

(1) Learn the remaining details of the proof of the excision theorem, pp.119-124.
(2*) How to compute the homology of any wedge sum ∨j∈JXj for good pairs (Xj, xj): write

a detailed proof of Corollary 2.25, p. 126. (You can use Proposition 2.22 that we will
discuss in class). Then use it to compute the reduced homology of any wedge of n-
spheres, ∨j∈J Sj. That is, each Sj is homeomorphic to the n-sphere Sn for the same n,

and the problem is to compute H̃i(∨j∈JSj) in each dimension i. (One way to prove this
is to use Proposition 2.22 directly: apply it to the pair (X,A) := (tjXj,tj{xj}). In
this case, you would need to come up with an explicit isomorphism ⊕jHn(Xj, {xj}) ∼=
Hn(tjXj,tj{xj}) for all n. Check that it is induced by (post-composition with) the
inclusions Xj′ ↪→ tjXj. Another way is to use the long exact sequence for the pair

(X,A) = (tjXj,tj{xj}), and then replace Hn(X,A) with H̃n(X/A) using Proposition
2.22. This way works only for n ≥ 2. Proving this for all n ≥ 2 is enough for the
purpose of the homework.)

(3) Simplicial and singular homology, section 2.1, p. 131: # 22*. (This problem deals with
singular homology. In this problem, “free” should be interpreted as “free abelian”. You
can use the result from algebra: any subgroup of a free abelian group G is free abelian,
and of rank at most the rank of G. Hint for part (b): first use long exact sequences
to show that the maps in the nth homology induced by inclusions Xn = Xn+1 ↪→
Xn+2 ↪→ . . . are isomorphisms, Hn(Xn) = Hn(Xn+1) ∼= Hn(Xn+2) ∼= . . ., and use this
to prove that Hn(X) ∼= Hn(Xn). For extra fun: Part (b) actually holds even if X is not
finite-dimensional. Can you prove part (b) for any cell complex X?)

(4) Give a detailed computation of the cellular homology of (particular cellular structures
on) closed surfaces. (See particular cellular structures in examples 2.36 and 2.37, p.
141. Use the cellular boundary formula, p.140.)

For extra fun:

• Suppose X is a simplicial complex, then we can view it as a cell complex, and therefore
have two notions of homology for X: simplicial and singular. What is the relation
between these two homologies?
Since each simplicial complex can be viewed as a cell complex, and simplicial homology
can be viewed as cellular homology (check that the boundary maps are indeed the same
in the two cases), then we can ask a more general question: for any cell complex X,
what is the relation between the singular homology and the cellular homology of X? It
turns out, they are isomorphic. The best proof is the one using the tool of homological
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algebra called spectral sequences. Figure it out. Another proof is on pp. 139-140 in the
textbook, using the 5-lemma.
• Can one comb a hairy sphere? Try to comb the hair on a sphere in such a way that

no hair stands up. Is this possible? See how degrees of maps of spheres can be used to
solve this problem, p. 135 in the textbook.
• Is there a version of Mayer-Vietoris sequence co compute the (singular) homology of X

when it is covered by several (more than two) subsets? The answer is what is called the
Mayer-Vietoris spectral sequence, which is more involved than a long exact sequence.
Make a statement and prove it.
• We defined singular homology with coefficients in an abelian group, or more generally,

any module M over any ring R, denoted Hn(X;M).
Let X be any path-connected cell complex X and G := π1(X). Determine how the
(singular) homology of X with coefficients in the group ring ZG can be described in
terms of the universal cover X̃. The same question for cellular homology.

Topics: Homology of wedge sum (hw), the 5-lemma (hw), Hsimp
n (X) ∼= Hsing

n (X) (without
proof), invariance of simplicial homology under homeomorphisms (and under homotopy equiv-
alence), definition of cellular homology Hcell

n (X), Hcell
n (X) ∼= Hsing

n (X) (without proof), in-
variance of cellular homology under homeomorphisms (and under homotopy equivalence), the
cellular boundary formula (without proof), Betti numbers, the Euler characteristic of a finite
cell complex, invariance of the Euler characteristic under homeomorphisms, homology with
coefficients (in abelian groups or modules), the Mayer-Vietoris sequence (without proof).
Homework. To know before the final exam.

(1) Know the statement of the 5-lemma, see p.129.
(2) Know the statement of the Mayer-Vietoris sequence, see p. 149.

For extra fun:

• Prove the 5-lemma by diagram chasing, without looking in the textbook.
• Deduce the Mayer-Vietoris sequence as the long exact sequence corresponding to a

particular short exact sequence of chain complexes.

• The seminar talk. I encourage you to attend the GGT seminar generally. See the
master calendar of all seminars. I am giving a talk at GGT seminar on Thursday, May 2,
2024, at 11am, Altgeld Hall 143: The topology and geometry of units and zero-divisors:
origami. It relates several areas of mathematics. Not required, but feel free to come if
you are interested in those topics.
• ColorTaiko! On the same day, on May 2, from 2pm to 5pm there is a poster session

for Illinois Mathematics Lab that will include a poster for the “ColorTaiko!” com-
puter game. (Preliminary version for now.) This IML project is based on my paper
The topology and geometry of units and zero-divisors: origami.
• The evaluation forms for this class. The online evaluation forms should be avail-

able some time, probably between April 19 and May 1, 2024. You either receive this
information by email or directly log in on the website https://go.illinois.edu/

ices-online . I very much encourage you to fill out the evaluation forms. Since there
is a deadline, please don’t miss it. Also, bring your electronic devices at the beginning
of the last class on Wednesday to fill out registration forms online.

https://calendars.illinois.edu/list/7421
https://calendars.illinois.edu/detail/7421?eventId=33487277
https://calendars.illinois.edu/detail/7421?eventId=33476177
https://calendars.illinois.edu/detail/7421?eventId=33476177
https://mineyev.web.illinois.edu/art/top-geom-uzd-origami.pdf
https://go.illinois.edu/ices-online
https://go.illinois.edu/ices-online
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• Possible projects for summer and after. If you are interested in doing a project
with me over the summer, please let me know. (Either tell me in class, or at office
hours, or call me by phone.)


