
THE TOPOLOGY AND GEOMETRY
OF UNITS AND ZERO-DIVISORS: ORIGAMI

IGOR MINEYEV

ABSTRACT. We define a product structure Π, its corresponding 2-dimensional cell complexes
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3.7. When π1(YΠ) ∼= π1(XΠ) and π1(ȲΠ) ∼= π1(X̄Π) 13
3.8. Nondegeneracy and nontriviality 14
4. Geometry of metric spaces 14
4.1. Length spaces, geodesic spaces 15
4.2. Spaces of curvature ≤ κ and CAT(κ)-spaces 15
4.3. The Cartan-Hadamard theorem 15
4.4. Fixed points 16
4.5. Nonpositive curvature implies “torsion-free”. 16
4.6. The Berestovskii theorem 16
4.7. Local and global isometric embeddings 18
5. Geometry of cell complexes 18
5.1. Mκ-simplicial and Mκ-polyhedral complexes 18
5.2. Links 19
5.3. Local geometry of Mκ-polyhedral complexes 19
5.4. Complexes of curvature ≤ κ 20
6. The geometry of units and zero-divisors 20
6.1. The middle link 20
6.2. Metric structures on YΠ 21
6.3. Multiplicity 21
6.4. Nonpositive curvature implies nondegeneracy 24
7. Necessary and sufficient combinatorial conditions on product structures 24
7.1. Conditions on product structures 24
7.2. The program 27
References 28



THE TOPOLOGY AND GEOMETRY OF UNITS AND ZERO-DIVISORS: ORIGAMI 3

1. INTRODUCTION.

The Kaplansky conjectures are several purely algebraic questions that have been open
for a long time. In 1956-1957 Kaplansky presented a list of several questions about group
algebras FG, where F is a field and G is a group (see [27], [28]). In this paper we will
concentrate on two of those conjectures.

• The unit conjecture. For any torsion-free group G and any a, b ∈ FG, does ab = 1
imply that a and b are trivial units, meaning that a is a multiple of one element in G
and b is a multiple of an element in G?
• The zero-divisor conjecture. For any torsion-free group G and any a, b ∈ FG, does

ab = 0 imply that a and b are trivial zero-divisors, meaing that a = 0 or b = 0?
The unit conjecture has actually been known since 1940, when Higman stated it as a ques-

tion in his article [26]. One counterexample to the unit conjecture is currently known, re-
cently found by Gardam [22].

To study the Kaplansky conjectures, we propose a conceptual shift: instead of looking
for nontrivial units or zero-divisors over a particular group G, we propose directing the
effort to constructing multiple groups that would admit such units and zero-divisors. In
section 2.1 we define product structures and product substructures. Those are abstract concepts
– originally unrelated to any group – that reflect the structure of a desired unit or a zero-
divisor. Next, sections 3.1, 3.2, 3.3 introduce topology into the picture: for any product
structure or substructure Π we associate particular 2-dimensional complexes XΠ, YΠ, X̄Π,
ȲΠ. These complexes lead to the full universal group ḠΠ := π1(X̄Π). We show in sections 3.4
and 3.5 how, given a product structure Π, one can associate specific units or zero-divisors
aΠ and bΠ in the group rings Z2ḠΠ and RḠΠ, where R is any ring with unity.

While trying to construct counterexamples to the unit conjecture and to the zero-divisor
conjecture, the main difficulty is to guarantee that the group ḠΠ is torsion-free and that the
associated units and zero-divisors are nontrivial. We address these two challenges by using
geometry of cell complexes: it is shown in sections 4.5 and 6.4 that a product structure Π is
nondegenerate and the group ḠΠ is torsion-free if the corresponding compex YΠ admits a
metric structure of curvature ≤ 0. Then, as described in section 3.8, nondegeneracy implies
the nontriviality of the associated units and zero-divisors.

Further, in section 7.1 we provide several purely combinatorial conditions on a product
structure or substructure Π that guarantee the existence of such a metric structure on YΠ.
This allows for a unified computer search to look for counterexamples to the two Kaplansky
conjectures. We finish with a general program on how to look for units and zero-divisors, in
section 7.2.

This article combines five areas of mathematics: using topology and geometry, algebraic
problems are translated into combinatorial questions about graphs that can be verified by
computational means. It is the author’s hope and belief that a computer search should
be able to find examples satisfying the combinatorial conditions of section 7.1, and there-
fore provide multiple examples of groups with nontrivial units and zero-divisors, or that
this general approach can be modified to enable finding counterexamples computationally.
A negative computational result would also be of interest from a geometric viewpoint: if one
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checks computationally that for a given size (m, n) there are no product structures satisfying
the combinatorial conditions, this shows that no 2-complexes YΠ or ȲΠ of this particular size
(m, n) admit certain polyhedral metric structures of curvature ≤ 0.

The partition illustrated in Fig. 2 below is a result of the ongoing computational project in
collaboration with Manisha Garg and Haizi Yu. The project is devoted to designing various
algorithms and performing searches to look for product structures satisfying the combinato-
rial conditions described in section 7.1 below, and therefore, for counterexamples to the unit
and zero-divisor conjectures. The methods and results of the computation will be published
in a subsequent article.

Another outcome of this project is the author’s ongoing joint activity with students at
the University of Illinois to develop and keep improving the “ColorTaiko!” computer game,
based on the taikos (= product graphs) defined in section 2.6 below. A player will draw pairs
of edges in a bipartite graph, consecutively. The game will color the edges at each step and
check whether certain combinatorial conditions are satisfied (as in section 7.1). The goal is
to progress as much as possible towards creating a full partition of the edges in the complete
bipartite graph. The goal of writing the game is to popularize Kaplansky conjectures to the
general public and to engage students in research. Eventually, the “ColorTaiko!” game will
be available to the public on the author’s website and elsewhere.

Full disclosure: the research presented in this article is expressly not supported by the
National Science Foundation. The author’s proposal to write this article, to perform compu-
tational search for counterexamples to the Kaplansky conjectures and to develop the “Col-
orTaiko!” computer game was declined in February 2024 by the Topology program at the
NSF. The reviewers and the panel did not count “the research itself” as “broader impact”
contrary to the policies and procedures guide, stated – in spite of the existing Gardam coun-
terexample to the unit conjecture – that “it would be helpful if the PI provided more context
as to why they believe these conjectures to be false”, that “the panel found the proposed
research to be innovative, but speculative and would have liked to see more evidence that
counterexamples would be found using this approach”, that “some panelists had additional
concerns that the outcomes would have minimal impact beyond the scope of the proposed
problems”, and that “the proposal would have been stronger if had more clearly addressed
the potential societal outcomes that would result from the activities described”.

2. COMBINATORIAL NOTIONS DESCRIBING UNITS AND ZERO-DIVISORS

2.1. Product structures and product substructures. Let G(A, B) denote the complete bipar-
tite graph on two finite sets A and B. The numbers m and n will always denote the cardinal-
ities of A and B, respectively. We will identify the edges in G(A, B), which we will call the
vertical edges, with the elements of the cartesian product (a, b) ∈ A× B. A product structure is
a triple Π = (A, B, P) in which

• A = {a1, . . . , am} and B = {b1, . . . , bn} are finite sets,
• P is a partition of the set of edges in G(A, B), that is, of the set A× B, such that any

two distinct edges (a, b), (a′, b′) ∈ A× B belonging to a cell of the partition P have no
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common vertices, i.e.,

∀C ∈ P ∀(a, b), (a′, b′) ∈ C ((a, b) 6= (a′, b′)⇒ (a 6= a′ and b 6= b′)).

A product substructure is a triple Π = (A, B, P) in which
• A = {a1, . . . , am} and B = {b1, . . . , bn} are finite sets,
• P is a subpartition of the set A× B, i.e., a family of subsets in A× B such that

∀C1, C2 ∈ P (C1 6= C2 ⇒ C1 ∩ C2 = ∅),

∀C ∈ P ∀(a, b), (a′, b′) ∈ C ((a, b) 6= (a′, b′)⇒ (a 6= a′ and b 6= b′)).

Clearly, each product structure is a product substructure. The pair (m, n) will be called
the size of Π.

Let P be a partition or a subpartition. P will be called even if each cell in P has exactly two
elements. We will call such cells 2-cells. P will be called odd if it has exactly one cell having
one element (1-cell) and all other cells are 2-cells.

For the purpose of studying zero-divisors in group algebras of the form Z2G, Schweitzer [32,
Definition 2.4] considered partitions of the set {(i, j) | i ∈ {1, . . . , n}, j ∈ {1, . . . , m}} into
pairs, and he defined the related matched rectangles as a means of illustrating such partitions.
Our product structure notion is similar in spirit, but is more general since it applies both
to zero-divisors and to units, and we additionally require that the two edges in each 2-cell
have no common vertices.The corresponding notion of taiko (= the product graph) that we
introduce in section 2.6 is a different way to illustrate units and zero-divisors; it is suitable
for illuminating both the combinatorial and topological/geometric nature of our approach.

2.2. Signatures. A signature on a product structure (A, B, P) is a function σ : A t B →
{1,−1} such that for each 2-cell {(ai, bj), (ai′ , bj′)} of the partition P, σ(ai′)σ(bj′) = −σ(ai)σ(bj).
Here one should think of {1,−1} as being a subset of R, where R is any ring with unity 1.
A product structure with signature is a quadruple Π± = (A, B, P, σ) such that (A, B, P) is a
product structure and σ is a signature on (A, B, P).

2.3. Group rings. As the name suggests, a product structure is a tool describing the struc-
ture of products in group rings. Z2 will denote the field of order 2. Given any group G, each
pair of elements in the group algebra Z2G,

a =
m

∑
i=1

ai, b =
n

∑
j=1

bj, ai, bj ∈ G ⊆ Z2G,

naturally leads to the product structure ({a1, . . . , am}, {b1, . . . , bn}, P), where P is the parti-
tion of {a1, . . . , am}× {b1, . . . , bn} into the equivalence classes under the equivalence relation

(ai, bj) ∼ (ai′ , bj′) ⇔ aibj = ai′bj′ .

If, in addition, ab = 1 or ab = 0, then this partition P admits a refinement P′ that is odd or
even, respectively. Conversely, we will see in sections 3.4 and 3.5 below how certain product
structures lead to groups ḠΠ and to certain associated elements aΠ and bΠ in group rings
Z2ḠΠ or RḠΠ. These elements are units if mn is odd and zero-divisors if mn is even.
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The important and difficult questions are: when is the group ḠΠ torsion-free and when
are aΠ and bΠ nontrivial? These properties are necessary to guarantee that a given product
structure Π indeed leads to a counterexample to the unit or zero-divisor conjectures. We will
address these questions in theorems 10 and 23 below, by topological and geometric means.
First, let us present a convenient way of illustrating product structures.

Product structure example 1:
{(a4, b8), (a5, b5)}, {(a6, b4), (a7, b3)}, {(a1, b1), (a2, b9)}, {(a6, b5), (a7, b4)},
{(a1, b2), (a2, b1)}, {(a5, b6), (a7, b5)}, {(a1, b3), (a3, b1)}, {(a4, b9), (a5, b8)},
{(a6, b7), (a7, b6)}, {(a1, b4), (a2, b3)}, {(a3, b2), (a4, b1)}, {(a6, b8), (a7, b7)},
{(a1, b5), (a2, b4)}, {(a4, b2), (a7, b8)}, {(a1, b6), (a3, b4)}, {(a4, b3), (a5, b9)},
{(a1, b7), (a2, b6)}, {(a3, b5), (a4, b4)}, {(a5, b1), (a6, b9)}, {(a1, b8), (a2, b7)},
{(a4, b5), (a5, b2)}, {(a6, b1), (a7, b9)}, {(a2, b2), (a3, b9)}, {(a5, b7), (a6, b6)},
{(a2, b5), (a3, b3)}, {(a2, b8), (a3, b6)}, {(a6, b2), (a7, b1)}, {(a3, b7), (a4, b6)},
{(a5, b3), (a7, b2)}, {(a3, b8), (a4, b7)}, {(a5, b4), (a6, b3)}.

a1 a2 a3 a4 a5 a6 a7

b1 b2 b3 b4 b5 b6 b7 b8 b9

FIGURE 1. Size (m, n) = (7, 9). Taiko (the product graph). The 1-cell of the
partition is {(a1, b9)}. The 31 2-cells of the partition are split into 6 colors.
There are no folds. Some patterns repeat.

Product structure example 2:
{(a1, b1), (a2, b2)}, {(a1, b2), (a2, b3)}, {(a2, b1), (a3, b3)}, {(a4, b1), (a1, b3)},
{(a3, b1), (a5, b4)}, {(a3, b2), (a4, b4)}, {(a1, b4), (a6, b5)}, {(a2, b4), (a7, b3)},
{(a3, b4), (a6, b3)}, {(a3, b5), (a4, b2)}, {(a4, b3), (a7, b5)}, {(a5, b1), (a1, b5)},
{(a5, b2), (a7, b4)}, {(a5, b3), (a8, b5)}, {(a8, b1), (a2, b5)}, {(a8, b4), (a4, b5)},
{(a5, b5), (a7, b2)}, {(a6, b1), (a8, b2)}, {(a6, b2), (a8, b3)}, {(a7, b1), (a6, b4)}.
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a1 a2 a3 a4 a5 a6 a7 a8

b1 b2 b3 b4 b5

FIGURE 2. Size (m, n) = (8, 5). Taiko (the product graph). The 20 2-cells of
the partition are split into 8 colors. There are no folds. There are no repeating
patterns. (What is the girth of the bottom graph LA?)

2.4. Horizontal edges. Given a product structure or substructure Π, by the horizontal edges
of Π we will mean the elements of the sets below; they come from the 2-cells in the parti-
tion P.

ĒA := {{a, a′} ∈ ĒA | ∃ b, b′ ∈ B {(a, b), (a′, b′)} ∈ P},
ĒB := {{b, b′} ∈ ĒB | ∃ a, a′ ∈ A {(a, b), (a′, b′)} ∈ P},
ĒAB := ĒA t ĒB,

EA := {(a, a′) ∈ ĒA | ∃ b, b′ ∈ B {(a, b), (a′, b′)} ∈ P},
EB := {(b, b′) ∈ ĒB | ∃ a, a′ ∈ A {(a, b), (a′, b′)} ∈ P},
EAB := EA t EB.

An orientation on Π is a function O : ĒAB → EAB such that
• for each {a, a′} ∈ ĒA, O({a, a′}) = (a, a′) or O({a, a′}) = (a′, a),
• for each {b, b′} ∈ ĒB, O({b, b′}) = (b, b′) or O({b, b′}) = (b′, b), and
• for each 2-cell {(a, b), (a′, b′)} ∈ P,

(O({a, a′}) = (a, a′) and O({b, b′}) = (b, b′)) or

(O({a, a′}) = (a′, a) and O({b, b′}) = (b′, b)).

We will say that a product substructure Π is orientable, or that Π satisfies the orientation
condition, if there exists an orientation on Π.

2.5. Bottom graph LA, top graph LB. Given a subproduct structure Π = (A, B, P) in which
P is either even or odd, the bottom graph LA is the unoriented graph whose vertex set is A
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and the set of edges is ĒΠA. The top graph LB is the unoriented graph whose vertex set is B
and the set of edges is ĒΠB. Denote LAB := LA t LB.

If, in addition, the subproduct structure Π admits an orientation O : ĒΠ → EAB, then the
bottom graph LA can be viewed as an oriented graph whose vertex set is A and the set of
edges is O(ĒΠA). Similarly, the top graph LB can be viewed as an oriented graph whose
vertex set is B and the set of edges is O(ĒΠB). This turns LAB into an oriented graph whose
set of edges is O(ĒΠ).

2.6. Taiko, the product graph. Suppose a subproduct structure Π = (A, B, P) is given
whose subpartition P is either even or odd. The taiko for Π, or the product graph for Π,
is the picture illustrating Π by placing A on the bottom, B on the top, drawing a vertical
edge (a, b) ∈ A× B, whenever there exists a 2-cell in P containing (a, b), and adding all the
horizontal edges from the set ĒΠ.

Furthermore, colors are used in taikos to indicate those horizontal edges that simultane-
ously occur in 2-cells of the partition P. More precisely, a color of horizontal edges is an equiv-
alence class of unoriented horizontal edges, where the equivalence relation ∼ is the one
generated by the relation ∼′: for two horizontal edges {a, a′} and {b, b′} we write {a, a′} ∼′
{b, b′} if there is a 2-cell in the partition P of the form {(a, b), (a′, b′)} or {(a, b′), (a′, b)}. With
this definition, the 2-cells in P naturally inherit the same colors as their horizontal edges
have, that is, there is a consistent coloring of 2-cells and horizontal edges. If there exists an
orientation on ĒΠ, we indicate it by placing an arrow on each unoriented horizontal edge as
in Figures 1 and 2.

Figure 1 illustrates a particular Bass unit over a particular finite cyclic group (which clearly
does have torsion). The size of the unit is (m, n) = (7, 9) and the partition coming from
that unit was further subdivided to make it odd. Figure 2 illustrates a particular product
structure obtained by a computer search.

3. THE TOPOLOGY OF UNITS AND ZERO-DIVISORS: ORIGAMI AND CELL COMPLEXES.

For each product structure Π we define 2-dimensional cell complexes XΠ, YΠ, X̄Π, ȲΠ by
an origami-like construction, by putting together several pieces of paper and folding them
in a certain way.

3.1. The complex XΠ. To each product structure Π = (A, B, P), where A = {a1, . . . , am}
and B = {b1, . . . , bn}, we associate a cell complex XΠ as follows. First consider the oriented
graph with three vertices xA, x1, xB, and two sets of oriented edges:

• the set of edges labeled by a1, . . . , am, each going from xA to x1,
• the set of edges labeled by b1, . . . , bn, each going from x1 to xB.

The 2-dimensional cell complex XΠ is defined by attaching, for each 2-cell {(ai, bj), (ai′ , bj′)},
one square along the loop aibjb−1

j′ a−1
i′ in the graph (see Fig. 3). (In this way, the “2-cells” of the

partition P exactly correspond to the “2-cells” in the cell complex XΠ.) GΠ will denote the
fundamental group of XΠ with basepoint x1. GΠ will be called the universal group associated
with the product structure Π.
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a1, . . . , am

b1, . . . , bn

xA

x1

xB

ai ai′

bj bj′

ai ai′

bj bj′

ejj′

ii′

FIGURE 3. The complexes XΠ and YΠ.

3.2. The complex YΠ. The next complex, YΠ, is obtained from XΠ by performing 2-foldings
as follows. First, for each 2-cell {(ai, bj), (ai′ , bj′)} in the partition P draw an edge eii′

jj′ going

from x1 to x1 within the corresponding 2-cell in XΠ, as illustrated in Fig 3. Such eii′
jj′ will

be called the middle edges. The same edge eii′
jj′ considered with the opposite orientation will

be denoted (eii′
jj′)
−1. Next, whenever there are two 2-cells in the partition P of the form

{(ai, bj), (ai′ , bj′)} and {(ai, bj′′), (ai′ , bj′′′)},

• identify the interiors of the two bottom triangles labeled a−1
i ai′(e

jj′

ii′ )
ε1 and a−1

i ai′(e
j′′ j′′′

ii′ )ε2 ,
where ε1, ε2 ∈ {1,−1},
• identify the edges ejj′

ii′ and ej′′ j′′′

ii′ if they have the same orientation in the sense that
ε1 = ε2, and
• identify the edge ejj′

ii′ with the edge opposite to ej′′ j′′′

ii′ if ejj′

ii′ and ej′′ j′′′

ii′ and have opposite
orientations, that is, if ε1 = −ε2.

Similarly, whenever there are two 2-cells in the partition P of the form {(ai, bj), (ai′ , bj′)}
and {(ai′′ , bj), (ai′′′ , bj′)}, identify the two top triangles labeled bjb−1

j′ (ejj′

ii′ )
ε1 and bjb−1

j′ (ejj′

i′′i′′′)
ε2 .

Keep performing such identifications for as long as possible. We let YΠ be the 2-complex
obtained at the end of this process.

It can be checked that the links of the vertices xA and xB in YΠ are isomorphic to LA
and LB, respectively. For this reason LA and LB can also be called the bottom link and the top
link, respectively.

3.3. The complexes X̄Π and ȲΠ. The complex X̄Π is obtained from XΠ by identifying the
three vertices xA, x1 and xB into one vertex x̄0. The complex ȲΠ is defined similarly: starting
with the complex YΠ, identify the vertices xA, x1 and xB into one vertex ȳ0. The fundamental
group of X̄Π will be denoted ḠΠ and will be called the full universal group of the product
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structure Π. In this quotient, the edges ai and bj become loops, so they represent elements
of ḠΠ, which we will also denote ai and bj, respectively.

X̄Π can be equivalently described as the presentation complex of the presentation

〈a1, . . . , am, b1, . . . , bn | a−1
i ai′bj′b−1

j for {(ai, bj), (ai′ , bj′)} ∈ P〉.

By the van Kampen theorem, the group given by the above presentation is isomorphic to ḠΠ.
This presentation and its corresponding group seem to be folklore, having occurred in mul-
tiple places in the literature and on the internet; see, for example, [34], [21], [32].

3.4. Associated units and zero-divisors over Z2. Let Π = (A, B, P) be a product structure
in which the partition P is either odd or even. Let āi and b̄j denote the elements of ḠΠ

∼=
π1(X̄) represented by the edge-loops labeled ai and bj, respectively.

Assume that mn is odd and P is odd. After relabeling we can assume that {(a1, b1)} is the
unique 1-cell in the partition P. Denote

aΠ := b̄−1
1 ā−1

1

m

∑
i=1

āi =
m

∑
i=1

b̄−1
1 ā−1

1 āi ∈ Z2ḠΠ, bΠ :=
n

∑
j=1

b̄j ∈ Z2ḠΠ.

For each 2-cell {(ai, bj), (ai′ , bj′)} in the partition P, the edge-loops in X̄Π labeled aibj and
ai′bj′ are homotopic because the loop aibjb−1

j′ a−1
i′ bounds a (topological) 2-cell. This means

that āib̄j = āi′ b̄j′ for each 2-cell {(ai, bj), (ai′ , bj′)} ∈ P, therefore, āib̄j + āi′ b̄j′ = 0 ∈ Z2ḠΠ.
Then

aΠbΠ = b̄−1
1 ā−1

1

m

∑
i=1

āi

n

∑
j=1

b̄j

= b̄−1
1 ā−1

1

(
ā1b̄1 + ∑

{(ai,bj),(ai′ ,bj′ )} is a 2-cell in P
(āib̄j + āi′ b̄j′)

)
= b̄−1

1 ā−1
1 ā1b̄1 = 1 ∈ Z2ḠΠ,

i.e., aΠ and bΠ are units. They will be called the units in Z2ḠΠ associated with Π.
If mn is even and P even, denote

aΠ :=
m

∑
i=1

āi ∈ Z2ḠΠ, bΠ :=
n

∑
j=1

b̄j ∈ Z2ḠΠ.

Since P is an even partition,

aΠbΠ =
m

∑
i=1

n

∑
j=1

āib̄j = ∑
{(ai,bj),(ai′ ,bj′ )}∈P

(āib̄j + āi′ b̄j′) = 0 ∈ Z2ḠΠ,

i.e. aΠ and bΠ are zero-divisors. They will be called the zero-divisors in Z2ḠΠ associated with
the product structure Π.

Lemma 1. If a product structure Π is nondegenerate and P is either odd or even, then |supp(aΠ)| =
m and |supp(bΠ)| = n.
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Proof. Assume that mn is odd and P is odd. If Π is nondegenerate, then the elements
b̄−1

1 , b̄−1
1 ā−1

1 ā2, . . . , b̄−1
1 ā−1

1 ān ∈ ḠΠ are pairwise distinct and the elements b̄1, . . . , b̄n ∈ ḠΠ
are pairwise distinct. This implies that the supports of aΠ and bΠ are the sets

supp(aΠ) = {b̄−1
1 , b̄−1

1 ā−1
1 ā2, . . . , b̄−1

1 ā−1
1 ān}, supp(bΠ) = {b̄1, . . . , b̄n}

and |supp(aΠ)| = m, |supp(bΠ)| = n.
Now assume that mn is even and P is even. If Π is nondegenerate, then the elements

ā1, . . . , ām ∈ ḠΠ are pairwise distinct and the elements b̄1, . . . , b̄n ∈ ḠΠ are pairwise distinct.
This implies that the supports of aΠ and bΠ are the sets

supp(aΠ) = {ā1, . . . , ām}, supp(bΠ) = {b̄1, . . . , b̄n}

and |supp(aΠ)| = m, |supp(bΠ)| = n. �

3.5. Associated units and zero-divisors over any ring with unity. If Πσ = (A, B, P, σ) is
a product structure with signature in which P is either odd or even, then we can produce
associated units and zero-divisors in the algebra RḠΠ over any ring R with unity, as follows.

First let Π := (A, B, P) and, as before, let ḠΠ be the corresponding full universal group. If
mn is odd and P is odd, we can assume that {(a1, b1)} is the unique 1-cell in P and let

aΠ := b̄−1
1 ā−1

1

m

∑
i=1

σ(ai)āi =
m

∑
i=1

σ(ai)(b̄−1
1 ā−1

1 āi) ∈ RḠΠ,

bΠ :=
n

∑
j=1

σ(bj)b̄j ∈ RḠΠ,

then

aΠbΠ = b̄−1
1 ā−1

1

m

∑
i=1

n

∑
j=1

(σ(ai)σ(bj))(āib̄j)

= b̄−1
1 ā−1

1

(
ā1b̄1 + ∑

{(ai,bj),(ai′ ,bj′ )} is a 2-cell in P
((σ(ai)σ(bj))(āib̄j) + (σ(ai′)σ(bj′))āi′ b̄j′)

)
= b̄−1

1 ā−1
1

(
ā1b̄1 + ∑

{(ai,bj),(ai′ ,bj′ )} is a 2-cell in P
(σ(ai)σ(bj))(āib̄j − āi′ b̄j′)

)
= b̄−1

1 ā−1
1 ā1b̄1 = 1 ∈ RḠΠ,

i.e., aΠ and bΠ are units in RḠΠ, which we will call the units over R associated with Πσ.
If mn is even and P is even, let

aΠ :=
m

∑
i=1

σ(ai) āi ∈ RḠΠ, bΠ :=
m

∑
i=1

σ(bj) b̄j ∈ RḠΠ,
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then

aΠbΠ =
m

∑
i=1

n

∑
j=1

(σ(ai)σ(bj))(āib̄j)

= ∑
{(ai,bj),(ai′ ,bj′ )}∈P

((σ(ai)σ(bj))āib̄j + (σ(ai′)σ(bj′))āi′ b̄j′)

= ∑
{(ai,bj),(ai′ ,bj′ )}∈P

(σ(ai)σ(bj))(āib̄j − āi′ b̄j′) = 0 ∈ RḠΠ,

i.e., aΠ and bΠ are zero-divisors in RḠΠ, which we will call the zero-divisors over R associated
with Πσ. The proof of the following lemma is similar to the proof of Lemma 1.

Lemma 2. If a product structure with signature Πσ is nondegenerate, then |supp(aΠ)| = m and
|supp(bΠ)| = n.

3.6. The fundamental groups of XΠ, YΠ, X̄Π, ȲΠ. We have the following diagrams for the
four complexes and their fundamental groups

(1)

XΠ YΠ GΠ = π1(XΠ) π1(YΠ)

X̄Π ȲΠ ḠΠ = π1(X̄Π) π1(ȲΠ)

qX

qΠ

q̄Π

qY qX∗

qΠ∗

q̄Π∗

qY∗

where qX, qY, qΠ, q̄Π are the canonical quotient maps. The maps qX, qY, qΠ are given by
the definitions of the corresponding complexes, and q̄Π is defined by performing the 2-
foldings on the complex X̄Π in parallel to the 2-foldings on XΠ in the definition of YΠ. The
homomorphisms qX∗, qY∗, qΠ∗, q̄Π∗ are the corresponding induced homomorphisms.

Lemma 3. The following properties hold for each product structure Π.
(a) The diagrams in (1) are commutative.
(b) The full universal group ḠΠ = π1(X̄Π) is isomorphic to the free product GΠ ∗ F2, where

F2 is the free group of rank 2. With the identification ḠΠ
∼= GΠ ∗ F2, the homomorphism

qX∗ : GΠ → ḠΠ induced by the quotient map qX : XΠ � X̄Π is the same as the standard
inclusion GΠ ↪→ GΠ ∗ F2 onto the factor GΠ. In particular, qX∗ is injective.

(c) The group π1(ȲΠ) is isomorphic to the free product π1(YΠ) ∗ F2. With the identification
π1(ȲΠ) ∼= π1(YΠ) ∗ F2, the homomorphism qY∗ : π1(YΠ) → π1(ȲΠ) induced by the
quotient map qY : YΠ � ȲΠ is the same as the standard inclusion π1(YΠ) ↪→ π1(YΠ) ∗ F2
onto the factor π1(YΠ). In particular, qY∗ is injective.

Proof. (a) The left diagram commutes because the 2-foldings in XΠ and in X̄Π do not affect
their vertices. The right diagram commutes because it is induced by the left one.

(b) X̄Π is obtained from XΠ by identifying three vertices xA, x1 and xB into one. This op-
eration can be split into two steps: first attach an two edges connecting xA to x1 and x1 to xB,
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respectively, then collapse each edge to a point. The second step is a homotopy equivalence,
and, since XΠ is path-connected, the result of the first step is homotopy equivalent to the
wedge sum of XΠ with two circles, XΠ ∨ S1 ∨ S1. Then by the van Kampen theorem,

ḠΠ = π1(X̄Π) ∼= π1(XΠ ∨ S1 ∨ S1) ∼= π1(XΠ) ∗ F2 = GΠ ∗ F2.

The proof of (c) is similar. �

3.7. When π1(YΠ) ∼= π1(XΠ) and π1(ȲΠ) ∼= π1(X̄Π). In general, the 2-foldings used to
obtain YΠ and ȲΠ do not necessarily preserve the homotopy type, but we now show that
they do preserve the fundamental group if Π is orientable as defined in section 2.4.

Lemma 4. If Π is orientable, then π1(YΠ) ∼= π1(XΠ) = GΠ and π1(ȲΠ) ∼= π1(X̄Π) = ḠΠ, and
the homomorphisms qΠ∗ and q̄Π∗ in diagram (1) are isomorphisms.

Proof. YΠ is obtained from XΠ by performing 2-foldings. Since Π is orientable, there is a
consistent orientation of the middle edges, hence at each step a 2-folding is of one of the
following two types:

xB (or xA)

x1 x1

xB (or xA)

x1 x1

xB (or xA)

x1 x1

xB (or xA)

x1 x1

The edges drawn on the bottom represent some middle edges (or their images after gluing).
The two vertices of each middle edge actually coincide in XΠ; we draw them distinct in the
picture to illustrate the 2-foldings clearly.

The 2-folding of type 1, pictured on the left, is a homotopy equivalence, so it does not
change the fundamental group. The 2-folding of type 2, pictured on the right, can be equiv-
alently described as follows. The two triangles share all their three sides, so that their union
V is homeomorphic to the 2-sphere. First attach a closed 3-disk D3 to V by identifying its
boundary with V by a homeomorphism. Attaching a 3-ball is not a homotopy equivalence,
but it preserves the fundamental group, by the Van Kampen theorem, because both D3 and
the image of its boundary S2 are simply connected. Then collapse the attached 3-disk so
that the two triangles are identified. This operation is a homotopy equivalence, so we have
isomorphisms π1(YΠ) ∼= π1(XΠ) = GΠ.

To prove the existence of an isomorphism π1(ȲΠ) ∼= π1(X̄Π) = ḠΠ, perform the same
2-foldings on X̄Π to obtain ȲΠ. The same argument applies. �

If Π is not orientable, after performing 2-foldings some middle edge e in the above figure
will eventually be identified with its inverse; this amounts to folding e in half. Since each
such edge e is actually a loop, it might represent a nontrivial element in the fundamental
group, and folding it in half makes it nullhomotopic in the quotient, therefore potentially
changing the fundamental group.
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3.8. Nondegeneracy and nontriviality. For any product substructure Π, the elements in
A = {a1, . . . , am} and in B = {b1, . . . , bn} one-to-one correspond to the edges in XΠ, also
labeled a1, . . . , am and b1, . . . , bn. These edges become loops in the complex X̄Π, so they rep-
resent some elements of the full universal group ḠΠ = π1(X̄Π), which we denote ā1, . . . , ām
and b̄1, . . . , b̄n, respectively. A product structure or substructure Π is called nondegenerate if
āi 6= āi′ for i 6= i′ and b̄j 6= b̄j′ for j 6= j′. We will use the same definition of nondegeneracy for
product structures with signature. The following equivalent description of nondegeneracy
follows from Lemma 3.

Lemma 5. A product structure or substructure Π is nondegenerate if and only if
• for each pair (ai, ai′) with i 6= i′, the loop in XΠ at x1 with label a−1

i ai′ represents a non-trivial
element in the universal group GΠ = π1(XΠ), and
• for each pair (bj, bj′) with j 6= j′, the loop in XΠ at x1 with label bjb−1

j′ represents a non-trivial
element in GΠ.

The support of an element a = ∑g∈G rg g in a group ring RG is the set

supp(a) = {g | rg 6= 0}.
A unit a in a group ring RG is nontrivial if a is not an R-multiple of a single element in G,
that is, if |supp(a)| ≥ 2. A zero-divisor a in a group ring RG is nontrivial if a 6= 0, that is, if
|supp(a)| ≥ 1. Lemmas 1 and 2 imply the following.

Lemma 6. If a product structure Π is nondegenerate, Π is of size (m, n), m ≥ 2 and n ≥ 2, then
the associated units or zero-divisors aΠ, bΠ ∈ Z2ḠΠ are nontrivial. If a product structure with
signature Πσ is nondegenerate, Πσ is of size (m, n), m ≥ 2 and n ≥ 2, then the associated units or
zero-divisors aΠ, bΠ ∈ RḠΠ are nontrivial.

The fact that Fig. 1 comes from a known nontrivial unit implies that it represents a non-
degenerate product structure. For Fig. 2 nondegeneracy is not immediately apparent, and
generally there is no known way to verify nondegeneracy.

Generally, deciding whether two elements in a group G given by a presentation are equal
is equivalent to the word problem introduced by Max Dehn in 1911 [20]. Novikov [29], [30],
[31] and Boone [12], [13], [14] independently proved that the word problem is unsolvable,
in general, for finitely presented groups. Since there are many types of product structures,
it is reasonable to expect that the question whether a given product structure Π is nonde-
generate should be hard or impossible to decide algorithmically in general. This is where
geometry helps: we will show that a product structure Π is nondegenerate if the complex YΠ
admits a metric of negative curvature. Further, we will list specific combinatorial conditions
guaranteeing that YΠ admits a metric of negative curvature. This makes it possible to utilize
computer search to look for nontrivial units and zero divisors.

4. GEOMETRY OF METRIC SPACES

One benefit of working with riemannian manifolds is that one can define and use a notion
of sectional curvature. There is an extensive bibliography of articles and books generalizing
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this notion to more general metric spaces, particularly, to simplicial complexes and cell com-
plexes. In this section we summarize known results that allow, under certain assumptions,
to put a nice metric structure on a given cell complex.

4.1. Length spaces, geodesic spaces. A length space is a metric space X in which the distance
between every pair of points x, y ∈ X is equal to the infimum of the lengths of rectifiable
curves joining them. A geodesic, or a geodesic path, in a metric space X is an isometric em-
bedding of an interval into X. A geodesic metric space is a metric space in which each pair of
points can be connected by a geodesic. The length metric on a metric space is defined as the
infimum of the lengths of rectifiable curves; we refer to [16, I.3.2, I3.3, pp. 32-33] for details.

4.2. Spaces of curvature ≤ κ and CAT(κ)-spaces. In 1948 Busemann [18] introduced a no-
tion of a nonpositively curved space using upper bounds on the middle lines of geodesic
triangles. In 1951 Aleksandrov [2, §1.3, p. 8 and §4, p. 19] gave a general definition of spaces
of curvature bounded above. Aleksandrov’s earlier works also discussed notions of curva-
ture for metric spaces, in particular the notion of curvature bounded below; see [1], [6].

Given a real number κ, a CAT(κ)-space is a geodesic metric space in which each geodesic
triangle is at least as thin as its comparison triangle in the standard (simply connected) space
of curvature κ; see [16, II.1.1, pp. 158-159] for precise definitions. A comparison triangle is a
triangle with the same side lengths as those of the original triangle. For κ = 0, the standard
space is the euclidean plane, for κ = −1 it is the hyperbolic plane, and for κ = 1 it is the unit
2-dimensional sphere. This in particular implies that if κ ≤ 0, for each pair of points x and y
in a CAT(κ)-space, the geodesic joining x to y is unique.

A metric space is said to be of curvature ≤ κ if it is locally a CAT(κ)-space; see [16, p. 159].
A space of curvature ≤ 0 is also called a nonpositively curved space.

4.3. The Cartan-Hadamard theorem. This theorem relates spaces of curvature≤ κ to CAT(κ)-
spaces. The original statement of the theorem was proved by Hadamard [24] in the case of
surfaces and by Cartan [19] for arbitrary riemannian manifolds of nonpositive curvature.
This is an example of a local-to-global result, i.e., deducing properties of the universal cov-
ering from the local structure of a space. The following theorem is a generalization of the
original Cartan-Hadamard theorem from manifolds to metric spaces. It is a variation of the-
orem stated by Gromov [23, p.119], a detailed proof of which was given by Ballmann in
the locally compact case [7], Alexander-Bishop [5] proved this result under the additional
assumption that X̃ is a geodesic metric space.

Theorem 7 (The Cartan-Hadamard theorem [24], [19], [23, p.119], [7], [5], [16, II.4.1, p.193]).
Let X be a complete connected metric space.

(1) If the metric on X is locally convex, then the induced length metric on the universal cover X̃
is (globally) convex. (In particular, there is a unique geodesic segment joining each pair of
points in X̃ and geodesic segments vary continuously with their endpoints.)

(2) If X is of curvature ≤ κ, where κ ≤ 0, then X̃ (with the induced length metric) is a CAT(κ)-
space.



16 IGOR MINEYEV

4.4. Fixed points. Certain notions of center for a given subset Y ⊆ X were considered by
Cartan [19] for any simply connected manifold M of nonpositive curvature. He used this
notion to prove the existence of a fixed point for the action of any compact group of isome-
tries of M. Bruhat and Tits [17] proved a similar theorem for group actions on euclidean
buildings.

We now quote similar theorems in the more general case of CAT(κ) spaces. Define the ra-
dius of a subset Y in a metric space X to be the infimum of the positive numbers r such that
Y ⊆ B(x, r) for some x ∈ X.

Theorem 8 ([16, II.2.7, p. 179]). Let X be a complete CAT(κ) space and Y ⊆ X be a bounded
subset. If κ > 0, assume additionally that the radius of Y is < π/(2

√
κ). Then there exists a unique

point cY ∈ X, called the center of Y, such that Y ⊆ B̄(cY, rY).

The following general theorem is sometimes called the Cartan fixed-point theorem or the
Bruhat-Tits fixed-point theorem.

Theorem 9 ([16, II.2.8, p. 179]). If X is a complete CAT(0) space and Γ is a finite group of isometries
of X or, more generally, a group of isometries with a bounded orbit, then the fixed-point set of Γ is a
non-empty convex subset of X.

4.5. Nonpositive curvature implies “torsion-free”. For any complete, path-connected, non-
positively curved metric space X, consider the action of its fundamental group π1(X) on the
universal covering X̃ (see, for example, [25, Ch. 1, Prop. 1.39, p. 71]). The action is defined by
representing each g ∈ π1(X̃) by a loop f , lifting f to a path f̃ in X̃, and defining the unique
deck transformation that sends f̃ (0) to f̃ (1). If an element g ∈ π1(X) fixes a point in X̃,
then f̃ is a loop, hence it is nullhomotopic, then so is f , so g is trivial. In other words, the
π1(X)-action on X̃ is free. By the Cartan-Hadamard theorem (Theorem 7), X̃ is a CAT(0)
space. If there were a nontrivial element g ∈ π1(X) of finite order, then by Theorem 9, g
must have a fixed point in X̃, which is a contradiction. This proves the following.

Theorem 10 ([16, II.4.13, p. 201]). Let X be a complete, path-connected, nonpositively curved metric
space. Then the group π1(X) is torsion-free.

4.6. The Berestovskii theorem. The notion of a κ-cone over a metric space is due to Berestovskii.
(See [10, Def. 1], [9, Def. 1], [4, II.4.3, pp. 14–15], [3, II.4.3, p. 17], [11, 3.2, pp. 205–206], [8,
3.2, pp. 180–181], [16, Def. 5.6, p. 59]. This last name is also spelled as “Berestovskiĭ” and
”“Berestovskij” in the literature.)

The main idea to define a metric on the cone is to use the three laws of cosines: one for
curvature κ = 0 (in the euclidean plane), one for constant negative curvature κ < 0 (in
a rescaled hyperbolic plane), and one for constant positive curvature κ > 0 (in a rescaled
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2-sphere). Specifically,

for κ = 0: c2 = a2 + b2 − 2ab cos γ,

for κ < 0: cosh(
√
−κc) = cosh(

√
−κa) cosh(

√
−κb)

− sinh(
√
−κa) sinh(

√
−κb) cos γ,

for κ > 0: cos(
√

κc) = cos(
√

κa) cos(
√

κb) + sin(
√

κa) sin(
√

κb) cos γ.

Let (Y, dY) be a metric space and κ be a real number. The κ-cone over Y is the metric space
(CκY, d) defined as follows. First denote

Iκ :=

{
[0, ∞) if κ ≤ 0,
[0, π/(2

√
κ)] if κ > 0.

Let CκY be the quotient of the set Iκ ×Y by the equivalence relation

(t, y) ∼ (t′, y′) ⇔ t = t′ = 0 or (t = t′ and y = y′).

Denote the equivalence class of (t, y), i.e., the point in the cone corresponding to (t, y)
by ty. Depending on κ, the distance between two points ty and t′y′ in the cone CκY is
defined by solving for c in the corresponding law of cosines for a := t, b := t′, and γ :=
min{dY(y, y′), π}. Specifically,

for κ = 0: d(ty, t′y′) :=
√

t2 + t′2 − 2tt′ cos(min{π, dY(y, y′)}),

for κ < 0: d(ty, t′y′) := cosh−1
([

cosh(
√
−κa) cosh(

√
−κb)

− sinh(
√
−κa) sinh(

√
−κb) cos(min{π, dY(y, y′)})

]
/
√
−κ
)

,

for κ > 0: d(ty, t′y′) := arccos
([

cos(
√

κa) cos(
√

κb)

+ sin(
√

κa) sin(
√

κb) cos(min{π, dY(y, y′)})
]
/
√

κ
)

.

The proof of the following theorem due to Berestovskii can be found in [10], [9], [4], [3],
[16, II.3.14, pp. 188-190].

Theorem 11 (Berestovskii). Let Y be a metric space. The κ-cone X = CκY over Y is a CAT(κ)-
space if and only if Y is a CAT(1)-space.

Now we prove the lemma that will later be helpful for proving nondegeneracy of product
structures. For each point y ∈ Y there is a canonical interval in the cone CκY that “connects y
to the cone point”. Specifically, it is the image of the interval Iκ under the canonical embedding
ιy : Iκ ↪→ CκY given by ιy(t) := ty.

Lemma 12. Let Y be a metric space. For every y ∈ Y, the canonical embedding ιy : Iκ ↪→ CκY is an
isometric embedding.
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Proof. In the case κ = 0,

d(ιy(t), ιy(t′)) = d(ty, t′y) =
√

t2 + t′2 − 2tt′ cos(min{π, dY(y, y)})

=

√
t2 + t′2 − 2tt′ = |t− t′|.

Since we will only use this lemma in the case κ = 0, the cases κ < 0 and κ > 0 are left as an
exercise. �

4.7. Local and global isometric embeddings. The following theorem is another example of
a local-to-global property.

Theorem 13 ([16, Prop. 4.14, p. 201]). Let X and Y be complete connected metric spaces. Suppose
that X is non-positively curved and that Y is is locally a length space. If there is a map f : X → Y
that is locally an isometric embedding, then Y is non-positively curved and:

(1) For every y0 ∈ Y, the homomorphism f∗ : π1(Y, y0) → π1(X, f (x0)) induced by f is
injective.

(2) Consider the universal coverings X̃ and Ỹ with their induced length metrics. Every continu-
ous lift f̃ : X̃ → Ỹ of f is an isometric embedding.

5. GEOMETRY OF CELL COMPLEXES

5.1. Mκ-simplicial and Mκ-polyhedral complexes. For κ ∈ (0, ∞), Mκ denotes the standard
(simply connected) n-dimensional space of constant curvature κ. For example, Mn

0 is the n-
dimensional euclidean space, M−1 is the n-dimensional hyperbolic space, and Mn

1 is the
n-dimensional sphere of radius 1. An n-dimensional Mκ-simplex is the convex hull of n + 1
points in Mκ in general position; in the case κ = 1 we additionally require that those points
lie in some ball of radius < π/2 (i.e., in some open hemisphere) in the sphere Mn

1 .
An Mκ-simplicial complex is built out of a family of Mκ-simplices by identifying certain

faces of those simplices by isometries; we refer to [16, I.7.2,p.98] for the precise definition. It
is required that the map of each simplex to the quotient space is injective. A convex Mκ-cell is
the convex hull of finitely many points in the standard space Mn

κ . An Mκ-polyhedral complex
is built similarly from a family of convex Mκ-cells by gluing certain faces of those cells; we
refer to [16, I.7.37, p.114] for the precise definition. The map from each cell C to the quotient
is required to be injective only on the interior of the face; it is allowed, for example, to glue
together some faces of C.

Let K be an Mκ-polyhedral complex. Each cell C in K comes with the metric dC induced
from its inclusion into Mn

κ . The intrinsic pseudometric d on K is defined using piecewise geo-
desic paths: for x, y ∈ K,

(2) d(x, y) := inf
c

l(c),

where c : [a, b] → K is a path from x to y that is subdivided as a concatenation of geodesic
pieces ci so that the image of each ci lies in some cell Ci of K, l(ci) is the length of ci with
respect to the original metric on Ci, and l(c) := ∑k

i=1 l(ci). Equivalently, instead of piecewise
geodesic paths one can use strings of points. Also, the quotient pseudometric can be defined
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using particular finite sequences of points. See [16, I.7.4 and I.5.19, p.65], [16, I.7.4 and I.7.5,
p.99] and [16, I.7.38, p.114] for the equivalence of all these definitions.

One can easily switch between simplicial and polyhedral Mκ-complexes because each
simplicial Mκ-complex is a polyhedral Mκ-complex, and each polyhedral Mκ-complex can
be subdivided to become a simplicial Mκ-complex with the same metric; see [16, Proposi-
tion I.7.49, p.118].

For an Mκ-polyhedral complex K, Shapes(K) denotes the set of all isometry classes of the
Mκ-cells in K.

Theorem 14 (Bridson [15], [16, I.7.19, p.105 and I.7.50, p.118]). Let K be a connected Mκ-
simplicial or Mκ-polyhedral complex. If Shapes(K) is finite, then K is a complete geodesic metric
space.

5.2. Links. Given a vertex x in K, the link of x, denoted Lk(x, K), is the set of all directions
at x in K; see [16, I.7.15, p.103]. Informally, one can think of the directions at x as all the
unit tangent vectors at x that “point inside” the (closed) cells containing x. For each n-cell
C in K containing x, we can view Lk(x, C) as a (n− 1)-cell in Lk(x, K). Furthermore, using
angles between directions, Lk(x, C) can be identified with an (n − 1)-simplex lying inside
the (n− 1)-dimensional sphere, that is, of Mn−1

1 . In this way, the structure of Mκ-polyhedral
complex on K induces a structure of an M1-polyhedral complex on each link Lk(x, K).

5.3. Local geometry of Mκ-polyhedral complexes. For an Mκ-simplicial complex X and
x ∈ K, define

ε(x) := inf{ε(x, S) | S ⊆ K is a simplex containing x},
where

ε(x, S) := inf{dS(x, T) | T is a face of S and x 6∈ T}.
Here dS is the original metric on the metric simplex S, the one coming from its inclusion
into Mκ. More generally, if K is an Mκ-polyhedral complex and x ∈ K, ε(x) can be defined
similarly as the distance from x to the closure of its star st(x) minus st(x), where the distance
is measured in terms of the original metric on each cell in K; see [16, I.7.38, p. 114] for details.
If the set Shapes(K) is finite, then ε(x) > 0.

Theorem 15 ([16, I.7.16, pp. 103-105]). Let K be an Mκ-simplicial complex and let x ∈ K. If
ε(x) > 0, then B(x, ε(x)/2) is naturally isometric to the open ball of radius ε(x)/2 about the cone
point in Cκ(Lk(x, K)).

Lemma 16 ([16, I.7.56, p. 120]). Let K be an Mκ-polyhedral complex with Shapes(K) finite. If
the points x and y lie in in the same open cell in K, then for sufficiently small ε > 0 there exists
an isometry from B(x, ε) to B(y, ε) that restricts to an isometry from B(x, ε) ∩ C to B(y, ε) ∩ C for
every closed cell C containing x.

Lemma 17. Let K be an Mκ-polyhedral complex with Shapes(K) finite. For any edge (=1-cell) e
in K, the canonical map ce : e→ K is locally an isometric embedding.
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Proof. The 1-cell e is topologically a closed interval, though the canonical map in general
might identify its endpoints, so ce it is not necessarily injective. Let v be a vertex in K corre-
sponding to an endpoint of e. By Theorem 15, some neighborhood V of v in K is isometric
to some neighborhood of the cone point in the κ-cone Cκ(Lk(v, K)). Furthermore, following
the proof of that theorem one can see that this isometry is consistent with the cellular struc-
tures of V and of the link Lk(v, K) (both induced from K). In particular, each vertex in the
link Lk(v, K) corresponds to an edge in the cone Cκ(Lk(v, K)), and that edge is mapped to
an edge in V isometrically. By Lemma 12 the canonical embedding Iκ ↪→ Cκ(Lk(v, K)) is an
isometry. This implies that if a is an endpoint of the edge e, then there exists a neighborhood
of a in e such that the restriction of the canonical map ce to this neighborhood is an isometric
embedding.

Now take a to be any point in the interior of e in K, and let b be a point in the interior of e
in K that is mapped into V by ce. Since some neighborhood of b in e is mapped isometrically
into K, then by Lemma 16 some neighborhood of a in e is also mapped isometrically. This
proves that ce is locally an isometric embedding. �

5.4. Complexes of curvature ≤ κ. The following link condition was introduced by Gro-
mov [23]. An Mκ-polyhedral complex K with Shapes(X) finite is said to satisfy the link con-
dition if for every vertex v ∈ K the link complex Lk(v, K) is a CAT(1) space. The following
result was first stated by Gromov [23, p. 120], proved by Ballmann [7] in the locally compact
case and by Bridson [15] in the general case.

Theorem 18 ([16, section II.5.5, p. 207]). Let X be an Mκ-polyhedral cell complex such that
Shapes(X) is finite. The curvature of X is bounded above by κ if and only if X satisfies the link
condition.

An injective loop in a graph G can be defined as an injective continuous function from a
circle to G. A simple closed curve in G can be defined as a continuous function [0, 1] → G,
which is injective except the two endpoints 0 and 1 are mapped to the same point in G.
These two notions uniquely determine each other, and can be used interchangeably in what
follows. It is not hard to see that that a metric graph G is a CAT(1)-space if an only if it has
metric girth≥ 2π, i.e., every injective loop in G is of length≥ 2π. This implies the following
lemma.

Lemma 19 ([16, section II.5.6, p. 207]). A 2-dimensional Mκ-complex K satisfies the link condition
if and only if for each vertex v in K every injective loop in Lk(v, K) has length at least 2π.

The proof of the following theorem is obtained by combining Theorem 18 and Lemma 19.

Theorem 20. Let X be a 2-dimensional piecewise euclidean cell complex. X is non-positively curved
if and only if at each vertex v ∈ X, each injective loop in the link of v is of length at least 2π.

6. THE GEOMETRY OF UNITS AND ZERO-DIVISORS

6.1. The middle link. The middle link of a product structure or substructure Π, denoted L1,
is the link of the middle vertex x1 in the complex YΠ.
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A pattern in a taiko is an unordered pair of colors of horizontal edges together with their
orientations, that occur incident at a common vertex v in LAB = LA t LB. The situation when
the same pattern occurs at least twice at different vertices in LAB will be called a repeating
pattern.

A simplified version of the middle link, denoted Lsim
1 , is the graph whose vertices are the

pairs (horizontal-edge-color, direction) and the edges are the patterns occurring in LA and LB.
The two graphs in Figure 4 illustrate the simplified middle links of the two taikos in Figures 1
and 2, respectively.

FIGURE 4. Product structure example 1: (m, n) = (7, 9). The simplified middle
link Lsim

1 has 12 vertices and 44 edges. Some patterns repeat. Product structure
example 2: (m, n) = (8, 5). The simplified middle link Lsim

1 has 16 vertices
and 78 edges. There are no repeating patterns. Lime-colored edges represent
patterns occurring once. Apricot-colored edges represent repeating patterns.

6.2. Metric structures on YΠ. For each α ∈ (0, π), let ∆α be the isosceles triangle in the
euclidean plane with base of length 1 and the angles (α, β, β), then necessarily β = (π −
α)/2. The three special cases for α = π/3, π/2, 2π/3 are drawn below.

1

α

β β

1

α

ββ

1

α

ββ

Now we turn the cell complex YΠ defined in section 3.2 into a metric space: first identify
each of its 2-cells with the isosceles euclidean triangle ∆α so that the corners with angle α are
either on the top or on the bottom. Put the intrinsic pseudometric on YΠ as defined in (2).
YΠ is not a simplicial complex because some vertices of its triangles are identified, but it is
an M0-polyhedral complex. Furthermore, it becomes an M0-simplicial complex after taking
the first barycentric subdivision.

6.3. Multiplicity. The angles α and β are uniquely determined by each other. Specifically,
for α ∈ (0, π), β = β̄(α) := (π − α)/2, and the function β̄ is a decreasing bijection (0, π) →
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(0, π/2). We will be interested in an explicit description of the set

Q := {(i, j) ∈ Z×Z | ∃α ∈ (0, π) αi ≥ 2π and 2β̄(α) j ≥ 2π}.

To address this question, for α ∈ (0, π), define the α-multiplicity function µ̂ : (0, π)→ Z and
the β-multiplicity function µ̄ : (0, π)→ Z by the formulas

µ̂(α) := min{k ∈ Z | αk ≥ 2π} = d2π/αe,
µ̄(α) := min{k ∈ Z | 2β̄(α) · k ≥ 2π} = d2π/(π − α)e,

respectively. Observe that µ̂ is nonstrictly decreasing and µ̄ is nonstrictly increasing. The
nonempty sets of the form µ̂−1(i) for integers i form a partition of (0, π). Similarly, the
nonempty sets of the form µ̄−1(j) for integers j form a partition of (0, π). The canonical
common refinement of these two partitions consists of all nonempty sets of the form Aij :=
µ̂−1(i) ∩ µ̄−1(j). Call a pair of integers (i′, j′) minimal if Ai′ j′ 6= ∅ but Ai′−1,j′ = ∅ and
Ai′,j′−1 = ∅. To find all minimal pairs, we plot the solutions of the equations 2π/α = i and
2π/(π − α) = j :

α̂i := 2π/i, ᾱj := π − 2π/j.

α̂3α̂4α̂5α̂6α̂7α̂8α̂9α̂10. . .

ᾱ3 ᾱ4 ᾱ5 ᾱ6
. . .

ᾱ2 = 0

α̂2 = π

The cells of the two partitions of (0, π) are as follows:

µ̂−1(i) = [α̂i, α̂i−1) for i = . . . , 5, 4, 3,

µ̄−1(j) = (ᾱj−1, ᾱj] for j = 3, 4, 5, . . .

The following lemma is proved by tracing the above plot of points.

Lemma 21. For any pair (i, j) such that Aij 6= ∅ there exists a minimal pair (i′, j′) such that i′ ≤ i
and j′ ≤ j. The full list of minimal pairs (i′, j′) and their corresponding cells are as follows:

(i′, j′) = (6, 3), (4, 4), (3, 6);

A6,3 = [α̂6, ᾱ3] = {π/3}, A4,4 = [α̂4, ᾱ4] = {π/2}, A3,6 = [α̂3, ᾱ6] = {2π/3}.

Now we can give an explicit description of the set Q. The notation (i′, j′) ≤ (i, j) or
(i, j) ≥ (i′, j′) will mean “i′ ≤ i and j′ ≤ j ”.

Lemma 22.

Q = {(i, j) ∈ Z×Z | ∃(i′, j′) ∈ Z×Z (i′, j′) is minimal and (i′, j′) ≤ (i, j)}
= {(i, j) ∈ Z×Z | (i, j) ≥ (6, 3) or (i, j) ≥ (4, 4) or (i, j) ≥ (3, 6)}.
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Proof.

(i, j) ∈ Q⇔ ∃α ∈ (0, π) αi ≥ 2π and 2β̄(α) j ≥ 2π

⇔ ∃α ∈ (0, π) µ̂(α) ≤ i and µ̄(α) ≤ j

⇔ ∃(i′, j′) ∈ Z×Z
(
(i′, j′) ≤ (i, j)

and [∃α ∈ (0, π) µ̂(α) ≤ i′ and µ̄(α) ≤ j′]

and ¬[∃α ∈ (0, π) µ̂(α) ≤ i′ − 1 and µ̄(α) ≤ j′]

and ¬[∃α ∈ (0, π) µ̂(α) ≤ i′ and µ̄(α) ≤ j′ − 1]
)

⇔ ∃(i′, j′) ∈ Z×Z
(
(i′, j′) ≤ (i, j)

and [∃α ∈ (0, π) µ̂(α) ≤ i′ and µ̄(α) ≤ j′]

and [∀α ∈ (0, π) i′ − 1 < µ̂(α) or j′ < µ̄(α)]

and [∀α ∈ (0, π) i′ < µ̂(α) or j′ − 1 < µ̄(α)]
)

⇔ ∃(i′, j′) ∈ Z×Z
(
(i′, j′) ≤ (i, j)

and [∃α ∈ (0, π) i′ − 1 < µ̂(α) ≤ i′ and j′ − 1 < µ̄(α) ≤ j′]

and [∀α ∈ (0, π) i′ − 1 < µ̂(α) or j′ < µ̄(α)]

and [∀α ∈ (0, π) i′ < µ̂(α) or j′ − 1 < µ̄(α)]
)

⇔ ∃(i′, j′) ∈ Z×Z
(
(i′, j′) ≤ (i, j) and µ̂−1(i′) ∩ µ̄−1(j′) 6= ∅

and ¬[∃α ∈ (0, π) µ̂(α) ≤ i′ − 1 and µ̄(α) ≤ j′]

and ¬[∃α ∈ (0, π) µ̂(α) ≤ i′ and µ̄(α) ≤ j′ − 1]
)

⇔ ∃(i′, j′) ∈ Z×Z
(
(i′, j′) ≤ (i, j) and µ̂−1(i′) ∩ µ̄−1(j′) 6= ∅

and
[ ⋃

i′′≤i′−1

µ̂−1(i′′)
]
∩
[ ⋃

j′′≤j′
µ̄−1(j′′)

]
= ∅

and
[ ⋃

i′′≤i′
µ̂−1(i′′)

]
∩
[ ⋃

j′′≤j′−1

µ̄−1(j′′)
]
= ∅

)
(because µ̂ is decreasing and µ̄ is increasing)

⇔ ∃(i′, j′) ∈ Z×Z
(
(i′, j′) ≤ (i, j) and µ̂−1(i′) ∩ µ̄−1(j′) 6= ∅

and µ̂−1(i′ − 1) ∩ µ̄−1(j′) = ∅ and µ̂−1(i′) ∩ µ̄−1(j′ − 1) = ∅
)
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⇔ ∃(i′, j′) ∈ Z×Z
(
(i′, j′) ≤ (i, j) and Ai′ j′ 6= ∅ and Ai′−1,j′ = ∅ and Ai′,j′−1 = ∅

)
⇔ ∃(i′, j′) ∈ Z×Z

(
(i′, j′) ≤ (i, j) and (i′, j′) is minimal

)
.

The second equality in the lemma follows from Lemma 21. �

6.4. Nonpositive curvature implies nondegeneracy.

Theorem 23. Given an orientable product structure or substructure Π, equip YΠ is with the struc-
ture of an M0-polyhedral complex by making one choice of the angle α uniformly for all triangles
in YΠ. If YΠ has curvature ≤ 0, then Π is nondegenerate.

Proof. Suppose that Π is degenerate, so that there is a pair of distinct elements a, a′ ∈ A and
the corresponding distinct pair of edges in XΠ labeled a and a′ such that the loop in XΠ at
x1 with label a−1

i ai′ represents the identity element in the universal group GΠ = π1(XΠ). By
Lemma 5, the edge-loop in ȲΠ with label a−1a′ is nullhomotopic in X̄Π. Since the product
structure is orientable, by Lemma 4 the quotient map XΠ → YΠ induces an isomorphism
on the fundamental groups, so we have similar two edges a and a′ and a nullhomotopy
of the loop a−1a′ in the complex YΠ. Lifting the edges a and a′ to edges ã and ã′ in the
universal covering ỸΠ starting at the same point, we obtain the path labeled ã−1 ã′. Since the
nulhomotopy of the loop a−1a′ can also be lifted to ỸΠ, we see that the path ã−1 ã′ is also a
loop, in ỸΠ.

Since YΠ has nonpositive curvature, the Cartan-Hadamard theorem (Theorem 7) implies
that ỸΠ is a CAT(0)-space with respect to the induced metric. Lemma 17 says that the inclu-
sion maps of the edges a and a′ into YΠ are local isometric embeddings. Since the interval
is simply connected, Theorem 13 says that the edges labeled ã and ã′ are embedded into ỸΠ
isometrically, so they provide two geodesic path with the same endpoints. Since geodesics
are unique in ỸΠ by Theorem 7, we deduce that ã = ã′, hence a = a′ in YΠ. This gives a
contradiction with the assumptions. �

7. NECESSARY AND SUFFICIENT COMBINATORIAL CONDITIONS ON PRODUCT STRUCTURES

We will now see how certain combinatorial conditions on a product structure Π, and its
corresponding taiko, relate to geometric structures on the complex YΠ.

7.1. Conditions on product structures. Consider the following conditions on a product
structure Π:

• Orientation. This condition was defined in section 2.4: there exists an orientation O :
ĒAB → EAB on Π. Each of the conditions below will be defined under the assumption
that orientation holds.
• No-fold. A fold in a taiko is a pair of horizontal edges that are incident to the same

vertex v ∈ A t B, have the same color and the same direction at v, meaning that they
are either both incoming towards v or both outgoing from v. (This is related to the
notion of folds introduced by Stallings [33].) The no-fold condition says that at each
vertex v in the taiko for Π, there is no fold at any vertex in the taiko.
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• No-pattern. A pattern in a taiko is an unordered pair of colors of horizontal edges
together with their orientations, that occur incident at a common vertex v in LAB =
LA t LB. That is, a pattern is a pair of the form {(c1, d1), (c2, d2)}, where c1 and c2
are colors and d1, d2 ∈ {in, out}. The no-pattern condition says that a given product
structure has no repeating patterns. That is, each pattern occurs at most once in LAB.
• girth(p, q). The girth of a graph G, denoted girth(G), is the length of the shortest

nonconstant injective loop in G, where each edge is considered to be of length 1. The
half-girth of a graph G, denoted half-girth(G), is, naturally, girth(G)/2. The condition
girth(p, q) says that girth(LAB) ≥ p and half-girth(L1) ≥ q.
• girth(6, 3)(4, 4)(3, 6). Also called the triple girth condition, it is defined to be the dis-

junction “girth(6, 3) or girth(4, 4) or girth(3, 6)”.
• metric-girth(2π). This condition is a metric version of girth(p, q). The metric girth of

a metric graph G, denoted metric-girth(G), is the length of the shortest nonconstant
injective loop in G, with respect to the given metric on G. The metric-girth(2π) con-
dition says that there exists a metric on YΠ that makes it an M0-complex such that
metric-girth(LAB) ≥ 2π and metric-girth(L1) ≥ 2π.

These conditions can be verified – algorithmically, in finite time – for any given product
structure Π, and for its corresponding taiko. All these conditions, for example, the existence
of orientation and the absence of folds, can be checked by a human visually from Fig. 1 and
Fig. 2, which is one benefit of drawing taikos in the first place.

Lemma 24. Let Π be an orientable product structure or substructure. Then, the half-girth of the
middle link L1 is an integer.

Proof. Let C be the set of colors, that is, equivalence classes of horizontal edges in the taiko
for Π. Then C is a bijective copy of the set of middle edges in YΠ. The set of vertices of the
middle link can be naturally identified with the set A t (C × {in, out}) t B, and the three
parts of this union can be viewed as three levels: bottom, middle, and top. The edges in the
middle link can only go between the bottom and the middle, or between the middle and the
top. This implies that any simple loop (that is, an nonconstant, injective loop) in L1 traverses
an even number of edges. Therefore, half-girth(L1) is an integer. �

Lemma 25. Let Π be an orientable product structure or substructure. Then, the following statements
are equivalent.

• There is a fold in the taiko for Π.
• There are double edges in the middle link L1, i.e., there is a pair of distinct edges L1 incident

to the same pair of vertices in L1.
• half-girth(L1) ≤ 1.

By negation, the following statements are equivalent.
• The no-fold condition holds.
• There are no double edges in the middle link L1.
• half-girth(L1) > 1 (or, equivalently, ≥ 2).

Also, the following statements are equivalent.
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• The conditions no-fold and no-pattern hold.
• half-girth(L1) > 2 (or, equivalently, ≥ 3).

Proof. The proof is an exercise using the definition of YΠ and the following illustrations.

a fold

xB (or xA)

x1 x1

a repeating pattern

x1 x1

xB (or xA)

xA (or xB)

�

Lemma 26 (Necessary conditions for curvature ≤ 0). Let Π be an orientable product structure
or substructure. Put the metric on the 2-complex YΠ corresponding to an angle α as in section 6.2,
and suppose that this metric is of curvature ≤ 0.

(a) If α = π/3, then no-fold, no-pattern, girth(6, 3) hold.
(b) If α = π/4, then no-fold, no-pattern, girth(4, 4) hold.
(c) If α = 2π/3, then no-fold, no-pattern, girth(3, 6) hold.

Since we are mostly interested in sufficient conditions for nonpositive curvature, we leave
the proof of this lemma as an exercise: first show that the curvature ≤ 0 assumption implies
the link condition for YΠ, which in turn implies each of the conditions listed in the lemma.

In Figure 1 and Figure 2, nondegeneracy of the product structure and being torsion-free
for the full universal group ḠΠ are not immediately apparent, and generally there should
be no easy way to verify them. Unless, that is, a given product structure satisfies some
favorable sufficient conditions.

Theorem 27 (Sufficient conditions for counterexamples to Kaplansky conjectures). For the
conjunctions

(1) orientation and girth(6, 3),
(1’) orientation, no-fold, no-pattern, and girth(LAB) ≥ 6,
(2) orientation and girth(6, 3)(4, 4)(3, 6),

(2’) orientation, no-fold and girth(6, 3)(4, 4)(3, 6),
(3) orientation and metric-girth(2π),

(3’) orientation, no-fold and metric-girth(2π),
the following implications hold: (1)⇔ (1′), (2)⇔ (2′), (3)⇔ (3′), (1)⇒ (2)⇒ (3).

If a product structure Π of size (m, n) satisfies at least one of the conjunctions (1), (1′), (2), (2′),
(3), (3′), then Π is non-degenerate and both universal groups GΠ and ḠΠ are torsion-free. In par-
ticular, if m ≥ 2 and n ≥ 2, then the associated elements aΠ and bΠ in Z2ḠΠ give a counterexample
to the unit conjecture when mn is odd, and a counterexample to the zero-divisor conjecture when mn
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is even. If, in addition, the product structure admits a signature, then the associated elements aΠ and
bΠ in RḠΠ give such counterexamples over any ring R with unity.

Proof. The implications (2)⇐ (2′), (3)⇐ (3′) and (1)⇒ (2) are obvious.
The equivalence (1)⇔ (1′) follows from Lemma 25: “no-fold and no-pattern” is equivalent

to half-girth(L1) ≥ 3.
To prove (2) ⇒ (2′), suppose that (2) holds but (2′) does not. Then there is a fold in the

taiko, then by Lemma 25, half-girth(L1) ≤ 1, which contradicts the condition girth(6, 3)(4, 4)(3, 6)
in (2). This shows the equivalence (2)⇔ (2′).

The equivalence (3)⇔ (3′) is proved similarly: if there is a fold, then by Lemma 25, there
are double edges in L1 and two such edges form an simple loop of length ≤ 2β < 2π, which
contradicts condition metric-girth(2π) in (3).

To prove (2) ⇒ (3), first assume that girth(6, 3) is satisfied. Put the metric structure on
YΠ corresponding to α = π/3 as in section 6.2. Since any simple loop in LAB has at least 6
edges, then its metric length is at least 6α = 2π. Similarly, since half-girth(L1) ≥ 3, then any
simple loop in L1 has at least 6 edges, so its metric length is at least 6β = 3(π − α)/2 = 2π.
This proves that YΠ is an M0-complex of nonpositive curvature. The cases girth(4, 4) and
girth(3, 6) are handled similarly.

To show that any one of the conjuctions (1), (1′), (2), (2′), (3), (3′) implies the existence
of units and zero-divisors, it suffices to prove this for the conjunction (3) only. Assume that
(3) holds, this implies that the link condition holds for YΠ, so by Theorem 18, YΠ is nonpos-
itively curved. By Theorem 10, the universal group GΠ = π1(YΠ) is torsion-free, then by
Theorem 10 the full universal group ḠΠ = π1(ȲΠ) is torsion-free as well. (Another way of
proving this is to observe that the metric structure of nonpositive curvature on YΠ induces
a metric structure of nonpositive curvature on its quotient ȲΠ, then to apply Theorem 10
to ȲΠ.)

By Theorem 23, Π is nondegenerate. If m ≥ 2 and n ≥ 2, then by lemmas 1 and 2, the
associated units or zero-divisors are nondegenerate. �

Remark 1. As one can see from Theorem 27, the no-fold condition can be removed from (2′)
and (3′), but it is helpful for computation: if no-fold is satisfied, then there are no double
edges in the middle link L1, which means that the edges in the middle link can be coded
simply as ordered pairs of vertices in L1. Among the six conjunctions, the conjunctions (1′),
(2′) and (3′) are the most suitable ones for utilizing computer search.
Remark 2. Consider all metric structures on YΠ given by all choices of angles α, as in sec-
tion 6.2. For each pair (i, j) in the set Q defined in section 6.3 there exists α ∈ (0, π) such that
girth(i, j) implies metric-girth(2π), that is, the link condition. Lemma 22 then implies that
the triple girth condition girth(6, 3)(4, 4)(3, 6) is the weakest possible condition on girth one
can hope for to look for product structures whose complex YΠ satisfies the link condition
(for some choice of α). That is, the triple girth condition maximizes the chances of finding
complexes YΠ of this type, and their associated units and zero-divisors.

7.2. The program. To look for counterexamples to the Kaplansky unit and zero-divisor con-
jectures, follow these steps.
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• For each size (m, n), search for product structures of size (m, n) satisfying at least one
conjunction in Theorem 27.
• If such product structures are found, list and classify such product structures and

their associated units or zero-divisors (aΠ, bΠ).
• If not found for a given size (m, n), conclude that for the metric structures on com-

plexes YΠ associated with any product structures of size (m, n) and any choices of α
are not of curvature ≤ 0.
• Modify the construction of the complex YΠ and the conditions in a way that they still

imply that the full universal group ḠΠ is torsion-free and the product structure Π is
nondegenerate.
• Repeat.
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