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NON-MICROSTATES FREE ENTROPY DIMENSION
FOR GROUPS

I. Mineyev and D. Shlyakhtenko

Abstract. We show that for any discrete finitely-generated group G
and any self-adjoint n-tuple X1, . . . , Xn of generators of the group algebra
CG, Voiculescu’s non-microstates free entropy dimension δ∗(X1, . . . , Xn)
is exactly equal to β1(G) − β0(G) + 1, where βi are the �2-Betti numbers
of G.

1 Introduction

In [V1], using ideas from his theory of free entropy and free probabil-
ity, D. Voiculescu has associated to every n-tuple of self-adjoint elements
(X1, . . . ,Xn) in a tracial von Neumann algebra a number δ(X1, . . . ,Xn),
which he called the free entropy dimension of this n-tuple. The free entropy
dimension is, very roughly, a kind of asymptotic Minkowski dimension of
the set of n-tuples of matrices that approximate the variables X1, . . . ,Xn in
non-commutative moments (these are commonly known as “sets of micro-
states”, see [V2,4], [J] for further details).

It is hoped that this number is an invariant of the von Neumann algebra
generated by X1, . . . ,Xn. While this hope is presently out of reach in the
most interesting cases, this quantity has played a key role in the solution
of several long-standing von Neumann algebra problems (see, e.g. [V4] for
a survey).

Nonetheless, it is known that a certain technical modification of δ, δ0

depends only on the algebra generated by X1, . . . ,Xn (and the ambient
trace). In particular, if we start with a discrete finitely-generated group G,
then δ0, evaluated on any set of generators of G, gives the same number,
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which is an invariant of G. This invariant is quite mysterious, and its exact
value is known in only a few cases (such as free products of abelian groups).

In [V3], Voiculescu has further introduced a different approach to free
entropy and free entropy dimension, based on the theory of free Hilbert
transform. This “microstates-free” approach has resulted in two defini-
tions of “non-microstates” free entropy dimension-like quantities, δ∗ and δ�.
While it is suspected that δ∗ = δ�, we only know that always δ� ≥ δ∗. By
a deep result of Biane, Capitaine and Guionnet [BiCG], δ∗ ≥ δ.

Much less is known about δ∗ than about δ; in all the known cases they
assume the same value, although this statement speaks more for the small
number of cases in which the value of both is known than for the existence
of a general strategy to prove that they are the same for some class of n-
tuples. Only recently have there been any non-trivial computations of δ∗

([A],[S]).
Let G be a finitely generated discrete group, and let CG be its group al-

gebra, endowed with the involution
( ∑

γ αγγ
)∗ =

∑
γ ᾱγγ−1 and the tracial

linear functional τ
( ∑

γ αγγ
)

= αe. Let X1, . . . ,Xn be any generators of
this algebra, which are self-adjoint (e.g. if γ1, . . . , γm are generators of G one
could take n = 2m and Xj = γj + γ−1

j , 1 ≤ j ≤ m, Xj = −i(γj−m − γ−1
j−m),

j = m + 1, . . . , 2m.
Recently, in [CoS] A. Connes and the second author have proved that

δ∗(X1, . . . ,Xn) ≤ δ�(X1, . . . ,Xn) ≤ β1(G) − β0(G) + 1 , (1.1)
where βi(G) are Atiyah’s �2-Betti numbers of the group G (see [At], [CG],
[L2]). The appearance of �2-invariants of G in connection with free entropy
dimension has been conjectured by specialists ever since the fundamen-
tal work of Gaboriau [G1,2]. Nonetheless, this connection remains quite
surprising to us, since free entropy dimension relies on the notion of free
Brownian motion, while �2-Betti numbers are homological in nature, and
it is hard to say why the two must have anything in common.

The main result of this paper is that in fact equality holds: we prove
that

δ∗(X1, . . . ,Xn) = δ�(X1, . . . ,Xn) = β1(G) − β0(G) + 1 ,

for any finitely-generated group G and any set of self-adjoints X1,...,Xn∈CG
generating CG. In particular, we conclude that in this case, δ∗ = δ�, and
both are algebraic invariants.

The main technical tool is a result showing that arbitrary �2 1-co-
boundaries on the Cayley graph of G can be approximated in �2 norm
by coboundaries of the form δg, where g ∈ �∞(G). This result holds more
generally for arbitrary graphs, and for �2 replaced by �p, 1 ≤ p < ∞.
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Using this result, we utilize a lower estimate for non-microstates free
entropy dimension from [S], which combined with (1.1) gives the main
result.

Notation. Throughout this paper, G will denote a finitely generated dis-
crete group. We write �2(G) for the Hilbert space of square-summable
functions on G. We denote by λ and ρ the left- and right-regular repre-
sentation of G on �2(G), and by L(G) the group von Neumann algebra,
which is the weak operator topology closure of the linear span of the image
λ(G) viewed as a subalgebra of the algebra of bounded operators B(�2(G)).
By τ we shall always denote the von Neumann trace on L(G) given by
τ(x) = 〈xδe, δe〉, where δe is the delta function at the identity of G. The
restriction of τ to λ(CG) is the canonical group trace on the group algebra
determined by linearity and the condition τ(g) = 1 if g = e, and τ(g) = 0
if g �= e.

The letter M will denote a general von Neumann algebra with a normal
(i.e. weak-operator continuous) tracial state τ : M → C, τ(xy) = τ(yx).
The von Neumann algebra M acts by left and right multiplication on the
Hilbert space L2(M), which is the completion of M in the norm ‖m‖2 =
τ(m∗m)1/2. In the case that M = L(G), L2(M) = �2(G), and the left and
right actions of L(G) on this space extend the left and right actions of G.
We will denote by Mo the opposite von Neumann algebra. The letter J will
denote the anti-linear Tomita conjugation operator J : L2(M) → L2(M)
extending J(m) = m∗. The operator J satisfies the property that for x ∈ M
and ξ ∈ L2(M), JxJ ξ = ξ x∗, i.e. it switches the right and left actions
of M . In particular, for any x ∈ M , JxJ commutes with M .

If H ⊂ L2(M)⊕n is a closed M -submodule of a multiple of the left
module L2(M), we denote by dimM H its Murray–von Neumann dimension.
This dimension satisfies the usual monotonicity and additivity properties
(see Chapter X in [MN] (especially Theorem X on p. 182), or, for a more
accessible introduction, [GoHJ], [CG]).

We denote by B(L2(M)) the space of all bounded linear operators on
L2(M). Finally, we will denote by HS the space of Hilbert–Schmidt op-
erators T : L2(M) → L2(M), i.e. the operators T ∈ B(L2(M)) for which
the norm ‖T‖HS = Tr(T ∗T ) is finite. HS is a Hilbert space with the inner
product 〈T, S〉 = Tr(TS∗). HS can be identified with the Hilbert space ten-
sor product L2(M)⊗̄L2(Mo) by the map m⊗no �→ mP1n, where P1 ∈ HS
denotes the rank one projection onto the vector 1 ∈ M ⊂ L2(M), m ∈ M
and no ∈ Mo. By definition, the von Neumann algebra tensor product
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M⊗̄Mo acts on the tensor product Hilbert space L2(M)⊗̄L2(Mo) and thus
on HS. The action of the algebraic tensor product M ⊗ Mo ⊂ M⊗̄Mo on
HS is explicitly given by (m⊗no) ·T = mTn (composition of operators on
L2(M)), for T ∈ HS, m ∈ M and no ∈ Mo.

2 Approximation of �p-Summable 1-Coboundaries on
Graphs

Let G be a graph. Ci(G, R) will denote the set of real i-cochains on G,
without any assumptions on their support. For each 1 ≤ p ≤ ∞, let
Ci

(p)(G, R) be the set of elements in Ci(G, R) which have finite �p norm.
Finally, let δ : C0(G, R) → C1(G, R) be the coboundary map.
Theorem 2.1. Let G be an arbitrary graph, p ∈ [1,∞) and f ∈ C0(G, R)
be such that δf ∈ C1

(p)(G, R). Then for each ε > 0 there exists g∈C0
(∞)(G, R)

such that ‖δf − δg‖p < ε. In particular, δg ∈ C1
(p)(G, R).

The same result holds in the complex-valued case.

Proof. Let Σi denote the set of i-simplices in G. We are given a function
f : Σ0 → R such that δf : Σ1 → R is �p-summable.

Fix some t ∈ [0,∞), denote Ut = f−1([−t, t]) ⊆ Σ0 and for x ∈ Σ0,

ft(x) =






−t if f(x) ∈ (−∞,−t)
f(x) if f(x) ∈ [−t, t]
t if f(x) ∈ (t,∞) .

Obviously, |ft(x)| ≤ min{|f(x)|, t} ≤ t, so in particular ft ∈ C0
(∞)(G, R) for

each t.
Let δUt be the set of all edges in G all of whose incident vertices are

in Ut. We have ⋃

t∈[0,∞)

Ut = Σ0 ,

and therefore ⋃

t∈[0,∞)

δUt = Σ1 , (2.1)

where {δUt} is an increasing sequence of sets.
Since f and ft coincide on Ut, then δf and δft coincide on δUt, that is

supp(δf − δft) ⊆ Σ1 \ δUt . (2.2)
We need the following lemma.
Lemma 2.2. With the above notation,∣

∣δft(e)
∣
∣ ≤ ∣

∣δf(e)
∣
∣ for all t ∈ [0,∞) and e ∈ Σ1 .
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Proof. Since δf and δft coincide on δUt, it only remains to show the
inequality when e ∈ Σ1\δUt, that is when the edge e is incident to a vertex x
in Σ0\Ut. By the definition of Ut this means that f(x) ∈ (−∞,−t)∪(t,∞).
We can assume f(x) ∈ (t,∞), the opposite case can be done similarly. Let
x′ be the other incident vertex of e. There are three obvious cases to
consider for x′, and we use the definition of ft in each case.

If f(x′) ∈ (t,∞) then∣∣δft(e)
∣∣ =

∣∣ft(x) − ft(x′)
∣∣ = |t − t| = 0 ≤ ∣∣δf(e)

∣∣ .

If f(x′) ∈ [−t, t] then∣
∣δft(e)

∣
∣ =

∣
∣ft(x) − ft(x′)

∣
∣ =

∣
∣t − f(x′)

∣
∣ = t − f(x′)

≤ f(x) − f(x′) =
∣
∣f(x) − f(x′)

∣
∣ =

∣
∣δf(e)

∣
∣ .

If f(x′) ∈ (−∞,−t) then∣∣δft(e)
∣∣ =

∣∣ft(x) − ft(x′)
∣∣ =

∣∣t − (−t)
∣∣ = t + t

≤ f(x) − f(x′) =
∣
∣f(x) − f(x′)

∣
∣ =

∣
∣δf(e)

∣
∣ .

This finishes the proof of the lemma. �

Now we can finish the proof of Theorem 2.1. Since δf is �p-summable,
given any ε > 0, (2.1) guarantees the existence of t ∈ [0,∞) such that

‖δf |Σ1\δUt
‖p < ε/2 ,

then by Lemma 2.2,
‖δft|Σ1\δUt

‖p ≤ ‖δf |Σ1\δUt
‖p < ε/2 ,

so (2.2) implies that
‖δf − δft‖p = ‖(δf − δft)|Σ1\δUt

‖p

= ‖δf |Σ1\δUt
− δft|Σ1\δUt

‖p ≤ ε/2 + ε/2 = ε .

Setting g = ft completes the proof of Theorem 2.1 in the real case.
The complex case is obtained by separately approximating the real and
imaginary parts of δf . �

3 �2-Betti Numbers

3.1 �2-Betti numbers for groups. The notion of �2-Betti numbers for
groups goes back to Atiyah [At] and Cheeger and Gromov [CG]. We refer
the reader to the book [L2] for more details and only sketch the construction
here.

Assume that the group G acts freely on a CW-complex X, and that the
complex X is “co-finite” (i.e. for each dimension i there is a finite number
of i-cells in X, so that every other i-cell in X can be obtained from one
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of them by the group action). Let C
(2)
i (X, C) denote the complex Hilbert

space whose orthonormal basis is formed by the i-cells of the complex X.
Then G acts on C

(2)
i (X); this action of course extends to a representation

of the group algebra CG of G on this Hilbert space. This representation
is contained in a multiple of the left-regular representation, and hence the
action of CG extends by continuity to an action of the group von Neumann
algebra L(G).

Thus one can speak of the Murray–von Neumann dimension of any
closed G-invariant subspace of the Hilbert space C

(2)
i (X).

The boundary maps ∂i of the complex X extend to continuous linear
operators ∂̂i : C

(2)
i (X, C) → C

(2)
i−1(X, C).

The reduced �2-homology of the complex X is defined to be the sequence
of Hilbert spaces

H
(2)
k (X) = ker ∂̂k/im ∂k+1 ,

where closure is taken with respect to the Hilbert space norm (the closure of
im ∂k+1 is the same as that of im ∂̂k+1). Note that H

(2)
k (X) can be thought

of as the orthogonal complement of im ∂k+1 inside ker ∂̂k ⊂ C
(2)
k (X, C).

Thus one can consider its Murray–von Neumann dimension, which is ex-
actly the k-th �2-Betti number of (X,G),

βk(X,G) = dimL(G) H
(2)
k (X) .

In the case that X is not co-finite, one writes X as an increasing union
of co-finite G-invariant subcomplexes Xn, n = 1, 2, . . . . In that case the
�2-Betti numbers can be computed as the following limits:

βk(X, G) = sup
n

inf
m≥n

dim
L(G)

ker ∂̂k : C
(2)
k (Xn, C) → C

(2)
k−1(Xn, C)

(im ∂̂k+1 : C
(2)
k+1(Xm, C) → C

(2)
k (Xm, C)) ∩ C

(2)
k (Xn, C)

.

(3.1)
(closure in Hilbert space norm, see [CG]).

The main point of interest for us is the fact that if the CW-complex X is
n-connected, then the first n + 1 �2-Betti numbers β0(X,G), β1(X,G), . . . ,
βn(X,G) are independent of X and are invariants of the group G. In this
case, they are referred to as the �2-Betti numbers of the group G.

3.2 Zeroth and first �2-Betti numbers for finitely-generated
groups. If (as we are in the present paper) one is only interested in the
zeroth and first �2-Betti numbers of a finitely generated group G, then one
can make an explicit choice of a one-connected CW-complex that can be
used to compute the first two �2-Betti numbers.
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Let G denote the Cayley graph of G with respect to the set of generators
g1, . . . , gn. Then G acts on G by left translation. We view G as a CW-
complex, whose 1-cells are the edges of G and whose 0-cells are the vertices
of G. There exists a simply-connected CW-complex X, whose 1-skeleton
is G; it is obtained from G by gluing in a single 2-cell for each non-trivial
loop in G.

The action of G on the CW-complex X need not be co-finite (although
it is co-finite when restricted to the 1-skeleton, since the group G is finitely
generated). However, one can write X as a union of Xm, m = 1, 2, . . . ,
where Xm are G-invariant subcomplexes of X, having G as their 1-skeletons,
and with the property that each Xm is co-finite. Indeed, one could just
enumerate all of the 2-cells used in the construction of X, and for each m,
let Xm be the space arising after the first m 2-cells, together with all of
their G-translates, are glued to G.

We consider the spaces of i-cells of Xm as subsets Ci(Xm) ⊂ Ci(X).
Let us denote by C

(2)
i (Xm, C) the completion of the space Ci(Xm, C) with

respect to �2-norm. Let ∂i : Ci(Xm, C) → Ci−1(Xm, C) be the boundary
map and ∂̂1 : C

(2)
1 (Xm, C) → C

(2)
0 (Xm, C), i = 1, 2, be its continuous

extension.
In this case [CG], [BV] the first two �2-Betti numbers of G are defined

as the following Murray–von Neumann dimensions over the group von Neu-
mann algebra L(G) of G:

β1(G) = dimL(G) H
(2)
1 (X) , β0(G) = dimL(G) H

(2)
0 (X) .

Then we have by additivity of dimension and by (3.1),

β1(G) = inf
m≥1

dimL(G)
ker ∂̂1 : C

(2)
1 (X1, C) → C

(2)
0 (X1, C)

im ∂̂2 : C
(2)
2 (Xm, C) → C

(2)
1 (Xm, C)

= inf
m

(
dimL(G) ker ∂̂1 − dimL(G) ∂̂2(C2(Xm))

)
,

β0(G) = 1 − dimL(G) im ∂̂1 . (3.2)

Note that ∂2(C2(Xm)), m = 1, 2, . . . , are increasing L(G)-submodules
of a finite-dimensional L(G)-module ker ∂̂1. Thus

inf
m

(
dim
L(G)

ker ∂̂1 − dim
L(G)

∂̂2(C2(Xm))
)

= dim
L(G)

ker ∂̂1 − dim
L(G)

∂̂2(C2(X)) .

Since X is simply-connected, im ∂2 = ker ∂1 and their �2-closures inside
C

(2)
1 coincide with the closure of the space im ∂̂2. Thus

β1(G) = dimL(G) ker ∂̂1 − dimL(G) ker ∂1 . (3.3)
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Denote by Ci(X, C) the space of all cochains on X, i.e. the algebraic
dual of Ci(X, C), and by

δ : Ci(X, C) → Ci+1(X, C)

the coboundary map. Let Ci
(2)(X, C) be the space of all �2-summable i-

cochains on X. Then by duality,

ker ∂1 = im ∂2 =
{
c ∈ C1

(2)(X, C) : δc = 0
}⊥ ⊂ C

(2)
1 (X, C) . (3.4)

Here we identify both C1
(2)(X, C) and C

(2)
1 (X, C) with �2(Σ1), Σ1 being the

set of 1-simplices in X, and all the closures and orthogonal complements
are taken in �2(Σ1).

The first cohomology of the complex C∗(X, C) vanishes, since X is
simply-connected.

Therefore if c ∈ C1
(2)(X, C) satisfies δc = 0, then c = δf for some

f ∈ C0(X, C). Thus by (3.4),

ker ∂1 =
(
δ(C0(X, C)) ∩ C1

(2)(X, C)
)⊥ ⊂ C

(2)
1 (X, C) .

Theorem 2.1 says that

δ
(
C0(X, C)

) ∩ C1
(2)(X, C) ⊆ δ

(
C0

(∞)(X, C)
) ∩ C1

(2)(X, C) ,

so we get the following corollary:

Corollary 3.1. The closure of im ∂2 equals

ker ∂1 =
(
δ(C0

(∞)(X, C)) ∩ C1
(2)(X, C)

)⊥ ⊂ C
(2)
1 (X, C) .

Lemma 3.2. Let δ(2)(G) = β1(G) − β0(G) + 1. Then

δ(2)(G) = n − dimL(G) ker ∂1 = dimL(G)

(
δ(C0

(∞)(X, C)) ∩ C1
(2)(X, C)

)
.

Proof. We have by (3.3) and (3.2)

β1(G) − β0(G) + 1 = dimL(G) ker ∂̂1−dimL(G) ker ∂1−1+ dimL(G) im ∂̂1+1

= dimL(G) ker ∂̂1 + dimL(G) im ∂̂1 − dimL(G) ker ∂1

= dimL(G) C
(2)
1 (X; C) − dimL(G) ker ∂1 ,

the last equality by additivity of Murray–von Neumann dimension. But
C

(2)
1 (X; C) ∼= (�2(G))⊕n, so that

δ(2)(G) = n − dimL(G) ker ∂1 = dimL(G)(ker ∂1)⊥.

It remains to apply Corollary 3.1. �
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3.3 ∆ and L2-homology of algebras. Let (M, τ) be a tracial von Neu-
mann algebra, and let X1, . . . ,Xn ∈ M be a self-adjoint set of elements (i.e.
we assume that for each i, there is a j so that X∗

i = Xj). Let HS be the
space of Hilbert–Schmidt operators on the Hilbert space L2(M, τ).

Let J : L2(M, τ) → L2(M, τ) be the anti-linear Tomita conjugation
operator (see notation). Then JMJ is exactly the commutant of M in
B(L2(M)).

We view HS as a bimodule over M using the action
(m1 ⊗ mo

2) · T = m1Tm2 , m1,m2 ∈ M , T ∈ HS .

Note that since HS ∼= L2(M, τ)⊗̄L2(M, τ)o ∼= L2(M⊗̄Mo), the action of
M ⊗ Mo on HS extends by continuity to the action of the von Neumann
algebra M⊗̄Mo, which is exactly the left-multiplication action of M⊗̄Mo

on L2(M⊗̄Mo). In particular, if H is any M,M -sub-bimodule of HS, which
is closed in the Hilbert–Schmidt norm, then it is a module over M⊗̄Mo; in
particular, the Murray–von Neumann dimension of H over M⊗̄Mo makes
sense.

Some of the main ideas of the approach to L2 homology of algebras
in [CoS], when particularized to the case of the first Betti number, can
be summarized in the following (well-known) table, giving a dictionary
between group and von Neumann algebra terms (here [X,Y ] = XY − Y X
denotes the commutator of X and Y ):

Group G von Neumann algebra M

�2(G) as a group module HS as an M,M -bimodule

g1, . . . , gn generators of G Xj = λgj , j = 1, . . . , n in the
left-regular representation λ of G

�∞(G) B(L2(M, τ))

Function f on G Operator mf of multiplication by f

δf = (ρg1(f) − f, . . . , ρgn(f) − f)
∈ C1

(2)(G) ∼= �2(G)⊕n with
f ∈ �∞(G) (ρ is the right-regular
representation)

([D,JX1J ], . . . , [D,JXnJ ]) ∈ HSn

for D ∈ B(L2(M, τ)) (see equa-
tion (3.7) and also Lemma 3.4).

Here [ · , · ] denotes the commutator in B(L2(M)).
Following the ideas presented in the table above and [S, Corollary 2.12]

(we caution the reader that the roles of M and JMJ are switched in the
present paper compared to [S]), consider the set
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H0(X1, . . . ,Xn) =
{
(Ξ1, . . . ,Ξn) ∈ HSn : ∃D ∈ B(L2(M))

s.t. Ξj = [D,JXjJ ] ∀j]
}

.

Then H0 is an M,M -bimodule.

Definition 3.1. Let
∆(X1, . . . ,Xn) = dimM⊗̄Mo H0(X1, . . . ,Xn) ,

where the closure is taken in the Hilbert–Schmidt topology on HS.

The quantity ∆ has appeared in [S] in connection with some technical
estimates on free entropy dimension. As we shall see later in Lemma 3.5
(and as is apparent from our table of analogies), the space H0(X1, . . . ,Xn)
is the von Neumann algebra analog of the space

{
c ∈ C1

(2)(G) : c = δf for some f ∈ �∞(G)
}

.

The proof of the following lemma was inspired by the work of Bekka
and Valette [BV].

Lemma 3.3. Assume that X1, . . . ,Xn generate M as a von Neumann
algebra. Then ∆(X1, . . . ,Xn) depends only on the algebra C(X1, . . . ,Xn)
generated by X1, . . . ,Xn and the trace τ .

Proof. For D ∈ B(L2(M)), define a Hilbert space seminorm by

‖D‖X1,...,Xn =
( n∑

j=1

‖[D,JXjJ ]‖2
HS

)1/2

. (3.5)

Let D̃(X1, . . . ,Xn) = {D : ‖D‖X1,...,Xn < ∞}, and let D0(X1, . . . ,Xn)
be the Hilbert space obtained from D̃(X1, . . . ,Xn) after separation and
completion. Endow D0(X1, . . . ,Xn) with the M,M -bimodule structure
coming from the action (m ⊗ no) · D = mDn. Then the map

D �→ (
[D,JX1J ], . . . , [D,JXnJ ]

)

descends and extends to an M⊗̄Mo-module isomorphism of D0(X1, . . . ,Xn)
with the Hilbert–Schmidt completion of H0(X1, . . . ,Xn).

Let Y1, . . . , Ym ∈ C(X1, . . . ,Xn). By the definition of the seminorm
in (3.5) we clearly have

‖D‖X1,...,Xn ≤ ‖D‖X1,...,Xn,Y1,...,Ym .

Also, since each Yj is a polynomial in X1, . . . ,Xn, ‖[D,JYjJ ]‖HS ≤
Cj‖D‖X1,...,Xn for some constants C1, . . . , Cm. It follows that the norms
‖ · ‖X1,...,Xn and ‖ · ‖X1,...,Xn,Y1,...,Ym are equivalent. Thus the Hilbert space
completions of H0(X1, . . . ,Xn) and H0(X1, . . . ,Xn, Y1, . . . , Ym) are isomor-
phic as M⊗̄Mo-modules. Thus

∆(X1, . . . ,Xn) = ∆(X1, . . . ,Xn, Y1, . . . , Ym) . (3.6)
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If Y1, . . . , Ym generate C(X1, . . . ,Xn), then by (3.6)
∆(Y1, . . . , Yn) = ∆(X1, . . . ,Xn, Y1, . . . , Ym) = ∆(X1, . . . ,Xn) ,

as claimed. �
Now let G be a discrete group, S = {g1, . . . , gn} a finite symmetric set

of generators (so that if g ∈ S, then g−1 ∈ S.) Let λ, ρ : G → B(�2(G))
be the left- and right-regular representations given by λg(f)(h) = f(g−1h)
and ρg(f)(h) = f(hg). Then JρgJ = λg−1 . Let M be the von Neumann
algebra of G.

The following lemma is standard:
Lemma 3.4. Consider the map φ : �∞(G)⊕n → B(�2(G))n given by

φ(ξ1, . . . , ξn) = (mξ1 , . . . ,mξn) ,

where mf denotes the operator of pointwise multiplication by f ∈ �∞(G).
Then

(a) φ(�2(G)⊕n) ⊂ HSn;
(b) For any closed G-invariant subspace V ⊂ �2(G)⊕n, one has

dimM⊗̄Mo Mφ(V )M = dimM V .

Proof. Part (a) is clear.
For part (b), notice that we can identify M = L(G) with Mo, and also

HS with �2(G)⊗̄�2(G) = �2(G × G).
With these identifications, if ξ =

∑
g agδg ∈ �2(G), with δg denoting the

delta function at g, then φ(ξ) =
∑

agδg×g ∈ �2(G×G). Hence φ is exactly
the continuous extension to L2 of the induction map

1 ⊗ · : L(G) → (
L(G × G)

) ⊗L(G) L(G) = L(G)⊗̄L(G) ,

corresponding to the diagonal inclusion of G into G × G (see [L1, The-
orem 3.3]). Now (b) follows because induction preserves dimension [L1,
Theorem 3.3]. �

Recall that δ(2)(G) was defined by δ(2)(G) = β1(G) − β0(G) + 1.
Lemma 3.5. Let S = {g1, . . . , gn} be a symmetric generating set for G.
Let Uj = λgj . Then ∆(U1, . . . , Un) ≥ δ(2)(G), as defined in Lemma 3.2.

Proof. Let G be the Cayley graph of G with respect to S. Identify C1
(2)(G)

with �2(G)⊕n, by identifying the j-th copy of �2(G) with edges labeled gj .
For f ∈ �∞(G), denote by δjf the j-th component of δf in this decom-

position. Thus δjf = ρgj(f) − f . Let
a(f) = (δ1f, . . . , δnf) .

To prove the inequality ∆ ≥ δ(2), we need to provide a lower estimate on
the dimension of the bimodule H0(U1, . . . , Un), and so we need some way
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of constructing elements in H0(U1, . . . , Un). In order to do that, we need
some way of constructing bounded operators D so that [D,JUjJ ] ∈ HS
for all j = 1, . . . , n.

We note that by Lemma 3.2, we have that
δ(2)(G) = dimL(G)

{
c ∈ C1

(2)(G) : c = δf for some f ∈ �∞(G)
}

.

Now let f ∈ �∞(G) be such that δf ∈ C1
(2)(G). This is the same as saying

that δj(f) = ρgj(f) − f ∈ �2(G) for each j = 1, . . . , n.
Denoting again by mf the operator of multiplication by f , we have
[mf , JUjJ ] = mfJUjJ − JUjJmf = JUjJ(JU−1

j JmfJUjJ − mf )

= JUjJ(mρgj (f) − mf ) = JUjJmδj(f) . (3.7)

Since δj(f) ∈ �2(G), we have that mδj(f) ∈ HS and so also [mf , JUjJ ]∈HS.
Thus mf is a bounded operator whose commutators with JUjJ , j =
1, . . . , n, are Hilbert–Schmidt operators.

Thus

A =
{
([mf , JU1J ], . . . , [mf , JUnJ ]) : f ∈ �∞(G) s.t. δf ∈ C1

(2)(G)
}

⊂ H0(U1, . . . , Un) .

Since H0(U1, . . . , Un) is an M,M -bimodule, it will suffice to prove that
dimM⊗̄Mo M A M ≥ δ(2)(G)

(we’ll actually prove that dimM⊗̄Mo M AM = δ(2)(G).)
We now aim to use Lemma 3.4 and the map φ defined there. Consider

the M,M -bimodule isomorphism of HSn given by
Ψ : (Ξ1, . . . ,Ξn) �→ (JU−1

1 JΞ1, . . . , JU−1
n JΞn) .

Then if f ∈ �∞(G) with δj(f) ∈ �2(G), j = 1, . . . , n, we have that
Ψ

(
[mf , JU1J ], . . . , [mf , JUnJ ]

)
=(mδ1(f), . . . ,mδn(f))=φ

(
δ1(f), . . . , δn(f)

)
.

Hence
dimM⊗̄Mo M AM = dimM⊗̄Mo Ψ(M AM)

= dimM⊗̄Mo Mφ
({c ∈ C1

(2)(G) : c = δf for some f ∈ �∞(G)})M
= dimM

{
c ∈ C1

(2)
(G) : c = δf for some f ∈ �∞(G)

}
= δ(2)(M) ,

using Lemma 3.4 and Lemma 3.2 in the last two equalities. �

For any algebra A generated by a self-adjoint set of operators X1, . . . ,Xn

on some Hilbert space H, and a tracial state on A given by τ(X) = 〈Xξ, ξ〉,
for some fixed ξ ∈ H, let

∆(X1, . . . ,Xn) = n−dimM⊗̄Mo

{
(T1, . . . , Tn) ∈ FRn :

∑

j

[Tj , JXjJ ] = 0
}

,
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where M = W ∗(X1, . . . ,Xn) is the von Neumann algebra generated by A,
FR stands for finite-rank operators on L2(W ∗(X1, . . . ,Xn)), and the clo-
sure is taken in the Hilbert–Schmidt norm. This quantity was introduced
in [CoS] and is related to L2-homology of A. The appearance of FR comes
from the fact that this is the analogue of the space of compactly supported
functions on the group, in the same way that HS is the analogue of the
space of square-summable functions. One has:

∆(X1, . . . ,Xn) = β1(X1, . . . ,Xn) − β0(X1, . . . ,Xn) + 1

(we refer to [CoS] for a definition of these Betti numbers). By [CoS] one
always has the inequality

∆(X1, . . . ,Xn) ≤ ∆(X1, . . . ,Xn) .

We sketch the proof for completeness. Let D ∈ B(L2(M)) be such that
Sj = [JXjJ,D] ∈ HS, j = 1, . . . , n. Then if Tj ∈ FR satisfy

∑

j

[Tj , JXjJ ] = 0 ,

we have

0 = Tr
(∑

j

[Tj, JXjJ ]∗D
)

=
∑

j

Tr
(
T ∗

j [JXjJ,D]
)

=
∑

j

Tr(T ∗
j Sj) .

Thus (T1, . . . , Tn) ⊥ (S1, . . . , Sn) in HSn. Hence

H0(X1, . . . ,Xn) ⊥
{

(T1, . . . , Tn) ∈ FRn :
∑

j

[Tj , JXjJ ] = 0
}

.

Since the Murray–von Neumann dimension of HSn over M⊗̄Mo is n, it
follows that ∆ ≤ ∆.

Corollary 3.6. Let Y1, . . . , Yn be a self-adjoint set of generators of CG.
Then

∆(Y1, . . . , Yn) = ∆(Y1, . . . , Yn) = δ(2)(G) ,

where δ(2)(G) = β1(G) − β0(G) + 1.

Proof. Since both ∆ and ∆ don’t depend on the choice of generators of CG,
we may as well assume that Y1 = U1, . . . , Yn = Un correspond to a sym-
metric family of generators of G. We then have by [CoS, Theorem 3.3(c)]
and Lemma 3.5 that

δ(2)(G) ≥ ∆(U1, . . . , Un) ≥ ∆(U1, . . . , Un) ≥ δ(2)(G) ,

which forces all inequalities to be equalities. �
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4 Computation of Free Entropy Dimension

Let G be a finitely generated discrete group, and choose Y1, . . . , Yn ∈ CG
to be self-adjoint elements in group algebra of G that generate it as a
complex algebra. One could for example take Y2j = Re λgj = 1

2(λgj + λ−1
gj

),
Y2j−1 = Im λgj = 1

2i(λgj −λ−1
gj

), j = 1, . . . , n, for some generators g1, . . . , gn

of G.
Theorem 4.1. Let G be a finitely generated group. Let Y1, . . . , Yn be
any self-adjoint generators of the group algebra CG, equipped with the
canonical group trace τ . Then

δ∗(Y1, . . . , Yn) = δ�(Y1, . . . , Yn) = β1(G) − β0(G) + 1 .

In particular, δ∗ is an invariant of the algebra generated by Y1, . . . , Yn,
taken with its trace.

Proof. By [S, Corollary 2.12]
δ∗(Y1, . . . , Yn) ≥ ∆(Y1, . . . , Yn) . (4.1)

By [CoS, Theorem 4.4 and Corollary 4.6],
∆(Y1, . . . , Yn) ≥ δ�(Y1, . . . , Yn) ≥ δ∗(Y1, . . . , Yn). (4.2)

Combining (4.1), (4.2) and Corollary 3.6, we find that
δ(2)(G) = ∆(Y1, . . . , Yn) ≥ δ�(Y1, . . . , Yn)

≥ δ∗(Y1, . . . , Yn) ≥ ∆(Y1, . . . , Yn) = δ(2)(G) ,

as claimed. �
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