/(--HOMOLOGY OF COMBABLE GROUPS AND 3-MANIFOLD
GROUPS.

IGOR MINEYEV

ABSTRACT. S. Gersten asked whether the reduced ¢;-homology of a group of type F,
vanishes in all dimensions up to n — 1. We prove this for combable groups and for the
fundamental groups of closed 3-manifolds. This means that the ¢;-homology in these
cases can be interpreted as “an amount of non-linearity” for the isoperimetric functions.

0. INTRODUCTION.

Exotic homology theories for groups developed by M. Gromov and S. Gersten, the /;-
homology HY in particular, proved to be useful tools for describing geometric properties
of groups. For example, hyperbolic groups are characterized by vanishing of certain
reduced and non-reduced ¢;-homology (Allcock-Gersten [1]). Later improving that result

Gersten showed that a finitely presented group is hyperbolic iff Hfl)(G, R) = 0. Also,
he gave a homological description of when embeddings of finitely generated groups are
undistorted in the word metric.

Let G be a group of type F,, i.e. there is a cell complex X’ of type K (G, 1) with finite
n-skeleton. Let X be the universal covering of X’. The present paper is an attempt to
answer the following

Question (Gersten). Fori < n — 1, can every summable cellular (real-valued) i-cycle
in X be approximated in {1-norm by i-cycles of compact support? Equivalently, does the

reduced {1-homology Ffi(l)(G, R) wvanish? (See the definitions below.)

Allcock and Gersten [1] showed the affirmative answer for ¢ = 1. In this paper we prove
the affirmative answer for all # > 1 when G is a combable group or the fundamental group
of a closed 3-manifold. Moreover, for combable groups this holds for chains with arbitrary
coefficients.

The author is thankful to S. Gersten for asking this question and also for help in finding
the way in the challenging world of mathematics.
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1. ¢;-HOMOLOGY.

In this section we remind some definitions and results from Gersten’s theory that will
explain why the above question is interesting. We consider the general setting with
arbitrary abelian coefficients.

1.1. Normed abelian groups. Let A be an abelian group. An abelian group norm on
A is a function |- | : A — Ry satisfying (1) |a|] = 0 iff a = 0, (2) | — a|] = |a|, and
(3) |la+ d| < |a| + |a/| for all a,a’ € A. An abelian group with an abelian group norm
is called a normed abelian group. In particular, each normed abelian group is a metric
space.

1.2. Homology theories. Let G be of type F,, so that there exists a cellular K(G,1)
complex with finite n-skeleton. Let X be the universal covering of this K (G, 1) complex
and A be a normed abelian group.

Denote C’Z.(l) (X, A) the set of the cellular (not necessarily compactly supported) A-valued
i-chains of finite /;-norm | - |1, where

e[y = le(e)

and e runs over the i-cells of X. The ¢;-norm makes C’i(l)(X , A) a normed abelian group.
The elements of C’i(l)(X , A) are called summable chains.

Define the boundary homomorphism 9 : C’fl) (X, A) — C’i(i)l (X, A) in the obvious way,
as the extension of the usual boundary homomorphism. It is well-defined for ¢ < n because
the n-skeleton of X is finite modulo G-action. For the same reason, there exists a constant
K; depending only on i and a choice of X, such that |5Z-c|1 < K|, i.e. 0; is bounded,
and therefore, continuous.

The ¢1-homology of GG is the homology of the chain complex

2 c(x,4) 5 (X, 4) S AP(X, 4) S,
Le.
W@, A)=272"(x,A4)/BY(X,A), i<n-1,
where R R
(1)(X,A) = Ker 0; and B (X A) = Im 0;1.
HZ.(l)(G, A) is well defined in dimensions i < n — 1.
The reduced ¢1-homology of G is
A(G,A) = 20X, A)/BY(X, A), i <n—1,
where B (X A) is the closure of B(l)( X,A) in C'Z.(l)(X, A).
Note that both H, M (G, A) and H )( G, ) are defined only when G is of type Fii1.

Always when talking about H; (1 )(G A) or () (G A) in this paper we assume by default
that G is of type Fiy1.
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1.3. Independence of X. The /;-homology and the reduced ¢;-homology are quasiisom-
etry invariant. This can be shown similarly to quasiisometry invariance of £,.-cohomology

in [6]. In particular, H (G A) and H, 1)(G A) do not depend on the choice of a K(G, 1)

Complex

1.4. Gersten’s short exact sequence. Denote by Z;(X, A) and B;(X, A) the sets of
usual compactly supported i-cycles and i-boundaries in X, respectively, and by Z;(X, A)

and B;(X, A) their closures in CZ-(I)(X ,A). Obviously,
(1) Bi(X,A) C BY (X, A).

Each element of BZ»(l)(X , A) has form dc, where ¢ is a summable chain. Since ¢ can be

approximated by compactly supported chains and d is bounded, then de can be approxi-
mated by boundaries of compactly supported chains. This implies that

2) BV(X, A) C Bi(X, A).
By (1) and (2),
(3) BY(X, A) = Bi(X, A).

Since X is contractible, B;(X, A) = Z;(X, A) for i > 1, and their closures in C’( (X, A)
also coincide:

(4) Bi(X,A) = Z;(X, A).

Obviously, Z;(X,A) C l)(X A) and Z (X, A) is closed in C’i(l)(X, A) as the kernel
of 5’1-, hence

(5) Zi(X,A) € ZV (X, A)

Combining (2), (3), (4) and (5), we obtain the filtration
BY (X, A) c BY(x, 4) c zV(X, A),
which together with the definitions of H; M and H, o) yields the short exact sequence
(6) 0— B (X, A)/BV (X, A) — HY(G, A) — A(G, A) —
The kernel and the cokernel of the above short exact sequence should be viewed as “parts”

of HZ-(l)(G, A). We take a closer look at these parts now.
By (3) and (4), Z;(X, A) (X A) hence

(7) @A) (X A)/Z,(X, A)

Therefore, vanishing of H (G A) means exactly that summable i-cycles in X can be
approxnnated in /;-norm by compactly supported i-cycles.

Let G, X and A be as above. We say that G satisfies a linear isoperimetric inequality
for A-valued i-cycles if there exists a constant K > 0 such that for any cycle z € Z;(X, A)
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there exists an (i 4+ 1)-chain a € C;(X, A) with da = z and |a|; < K|z|;. Similarly to [6]
one can see that this property is quasiisometry invariant, therefore independent of the
choice of X.

Proposition 1. If A is complete and G satisfies a linear isoperimetric inequality for
A-valued i-cycles then BZ.(D(X, A)/BZ-(I) (X,A)=0.

Proof. The abelian group B;(X, A) has the ¢;-norm | - |; induced from C;(X, A). It can
also be given the filling norm | - |; defined by

bl :=inf { |a|; | a € Ci41(X, A) and da = b }.

Since the boundary map 0 is bounded, |- |; is dominated by |- |¢. If G satisfies a linear
isoperimetric inequality for A-valued i-cycles, then these norms are actually equivalent.

Since Cﬁ)l (X, A) is the completion of C;41(X, A), then Bi(l)(X , A) is the completion of
B;(X,A) in the filling norm. Since C’Z—(I) (X, A) is complete, then Bi(l) (X,A) = Bi(X, A)
is the completion of B;(X,A) in the f;-norm. Since the two norms on B;(X, A) are
equivalent, the two completions coincide, i.e. Bi(l) (X,A) = BZ-(l)(X JA). O

Proposition 1 says that Bi(l)(X JA)/ BZ.(U (X, A) is a measure of non-linearity for isoperi-
metric functions in dimension .

2. APPROXIMATION OF SUMMABLE CYCLES.

Allcock and Gersten [1] asked the following: if X is a simply connected 2-complex, can
summable 2-cycles on X be approximated by 2-cycles of compact support? The example
below shows that the answer is “no” even assuming that the complex is contractible.

FiGuRrE 1. 2-complex Y.

The example. Start with a 2-cell f; whose boundary consists of one-edge loop la-
beled z;. Take another 2-cell f; with the boundary labeled yizoy; '27%. Glue these cells
identifying the edges with the same label to obtain a 2-complex Y;. Take a 2-cell f3 with
boundary labeled 1,23y, 'z, 2, glue it to Y; identifying corresponding edges to obtain a
complex Y5. Repeat this procedure infinitely many times. This gives an infinite 2-complex
Y (see Fig. 1). Each complex Y] is easily seen to be contractible, hence so is Y, as a union
of contractible spaces.
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The assignment z(f;) := %

(02)(z;) = (Ofi)(x;) — (Ofiy1) () = % 2% =0 and (0z)(y;) = 0. So z is a summable

gives a summable 2-chain on Y, and z is a cycle since

2-cycle on Y, and z is not approximable by cycles of compact support since all such are
trivial on Y.

Unfortunately, the above contractible complex does not admit a cocompact group ac-
tion. In [1] there is an example due to E. Formanek of a (not simply connected) complex X
with Zy(X,R) = 0 and Zél)(X .R) # 0. These examples suggest that the approximation
of summable cycles might not be possible in general.

Note that, for any (finitely generated) group G, Hél)(G,R) = 0, since any summable
function on a countable set can be approximated by functions of finite support. Also,
FIP)(G, R) = 0 for any G, as shown in [1]. In general, the question of vanishing of the
/1-homology for groups of type F,, remains open.

3. COMBINGS.
Definition 2. A metric space (X,d) with a base point * is called combable if it admits
a bounded combing {p, | v € X}, i.e. a set with the following properties:

(1) For each v € X, p, : [0,00) — X is a (not necessarily continuous) map with
Pu(0) = * and p([t,,00)) = v for some t, € [0, 00).
(2) The restriction py|jo4,) is a (k, A)-geodesic, i.e.
1
Ed(pv(t)'/pz)(t/)) —A< |t/ o t| < kd(pv<t)7pv<t/)) + A

for any t,t' €[0,t,] and some k > 1, A > 0 independent of v,t and t'.
(3) d(pu(t), pu(t)) < Ad(v,w)+ B for some A > 0 and B > 0 independent of v, w and t.

A finitely generated group G is called combable if it is combable as a metric space with
the word metric with respect to some finite generating set.

J. Alonso and M. Bridson proved the following

Theorem 3 ([2],Theorem 1.1). The property of being combable is quasiisometry invari-
ant.

and the following was shown by M. Troyanov.

Theorem 4 ([9],Proposition 19). Let X be a proper geodesic space and let G act properly
discontinuously and cocompactly by isometries on X. Then G is finitely generated and G
with the word metric (with respect to a finite generating set) is quasiisometric to X.

The main result of this section is

Theorem 5. If G is a combable group and A is a normed abelian group,
then H,(LD(G, A)=0 for anyn > 1.
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Proof. Since G is combable, it possesses a K (G, 1) complex X’ with finitely many cells in
each dimension [3, 5], so H,(ll)(G ,R) is defined for any n. Let X be the universal covering
of X" and let a vertex * in X be the base point.

Define d to be the path metric on X induced by assigning length 1 to each edge.
Put the induced metric on X©@ and put a word metric on G (with respect to some
finite generating set). Since G acts on X M) freely and cocompactly, each inclusion in the
sequence X0 — XM > G is a quasiisometry. Hence, by Theorem 3, X© is combable.
Let {p, | v € X} be a bounded combing on X©.

Denote B(R) the union of all cells in X ™Y whose vertices lie at distance at most R
from *. Define a projection prft : X(© — X© by the rule prfi(v) := p,(R). Conditions
(1) and (2) in Definition 2 of a combable space imply the following.

Lemma 6. (a) The image of X© under prf lies in B(kR + \)©.
(b) prf fizes the vertices of B(5 — X).

The map prg induces a map prf : C’él) (X, A) — Cy(X, A).

Theorem 7. The map prlt : Cél)(X, A) — Cy(X,A) extends to a chain map prf :
o (X, A) — Cu(X, A) with the following properties:
(a) there exists a sequence of mumbers K; > 1 such that |prf(c)|y < |cl1 for all ¢ €
GV (X, 4),
(¢) if supp(c) € B(E = X), then prf(c) = ¢, and
(b) there exists a sequence of numbers §; > 0 such that supp(prf(c)) C B(kR + X+ ;)
for all c € CZ»(I)(X, A).

Proof. For i = 0, conditions (a) — (¢) hold by Lemma 6. Each edge e with endpoints v,w
we map onto a shortest edge path v in XM connecting prf(v) to prfi(w). We view v as
an integral 1-chain a, with da, = w — v. By property (3) in the definition of a bounded
combing,

|acly = length(y) = d(prg(v), pro(w)) < kd(v,w) + A =k + \.

Up to the G-action, there are only finitely many pairs of vertices at distance at most k+ A
from each other, hence we can choose a 1-chain a, so that the image of the map e — a,
is finite up to G-action, and moreover, (b) is satisfied. In particular, |a.|; is uniformly
bounded over all edges e, so the formula

prf(Za&) = Zaeae, ap € A
e

e

defines a bounded map prft : CV (X, A) - ¢V (X, A).
We take 6; to be the maximum over all edges e of the diameters of supp a., then (c) is
satisfied. By the definition of prf, the following diagram commutes:
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P (x4 S V(X A)
Jprf? |prdt
Ci(X,A) 2 (X, A)

Next we continue inductively constructing prit the same way as we constructed prit. O

Now we finish the proof of Theorem 5. Let z be a summable cycle of dimension 7 in X.
For each R, z = zp + 2z, where zp is a chain supported on B(% — A), and 2} is a chain
supported on the cells not in B(% — ). Given € > 0, we choose R = R(z,¢,k, \) large
enough so that |2%|1 < 57=. Then by Theorem 7,

R / Ry / Ry} € €
z—pri(z)|, = |2p —pri‘(z < |zp|, + |pri‘'(z < K,— + <e.
| z( )‘1 ‘ R ’L(R)‘l ‘ R|1 ‘ ’L(R)‘l 2Kz 2Kz
Since prZ is a chain map, prf(z) is a compactly supported cycle, and it is e-close to z by
the above formula. O
There are two immediate corollaries of Theorem 5.

Theorem 8. If GG is an automatic group, then f_lr(bl)(G,R) =0 for anyn > 1.

Proof. Theorems 2.3.9 and 2.5.1 in [5] imply that the Cayley graph of G with respect to
a finite generating set admits a bounded combing. O

Theorem 9. If G is the fundamental group of a finite non-positively curved complex,
then HS)(G,R) =0 for any n.

“Non-positively curved” here means that there is K <0 so that

(1) each simplex of the complex is isometric to the convex hull of finitely many points
in the standard space of constant curvature K,

(2) inclusions of faces are isometric embeddings, and

(3) CAT(1) condition is satisfied on the links of the vertices.

Proof of Theorem 9. By a result of W. Ballmann [4] the universal cover X of such
a complex is CAT'(0), hence contractible. It also implies that the set of geodesic paths
connecting the base point * to the points in X gives a bounded combing in X, hence GG
is combable. 0

4. GRAPHS.

In this section we prove some preliminary results for graphs which will be used in
section 5 for 3-manifolds.

Let ' be a locally finite graph. Fix a base point * in I'©). We will view each edge of T
as an oriented interval of length 1 with the initial and terminal endpoints i(e) and t(e),
respectively; e will denote the edge e with the opposite orientation. I' is a metric space
with the metric given by the length of a shortest path. We will need an extended notion
of a subgraph.
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Definition 10. A subset U of I is called a subgraph of I if, for each closed edge e in T,
U Ne is an interval (possibly degenerate or empty) equipped with an orientation. For a
subgraph U, |U| denotes the set U with the Lebesgue measure on it.

The orientation on UNe does not have to be induced by the orientation on e. Obviously,
the closure of U is a genuine graph with an orientation and a length assigned to each of
its edges.

Let ¢ be a real valued 1-coboundary on I'. In other words, ¢ is a function ¢ : E(I') - R
on the set of directed edges in I" so that ¢(e) = —c(€), and with the additional property
that ¢ = 0P for some 0-cochain P which can be thought of as a “potential function”
P :T® — R and it can be constructed as follows: for each v € I'® choose an edge path
py in I' connecting * to v, and let P(v) be the sum of values of ¢ on the directed edges
in p,. Since ¢ is a coboundary the sum of its values along any directed edge circuit is 0,
so the above definition does not depend on the choice of p, for v. One easily checks that
c=0P.

Now we extend P linearly to a function P on all of I': for a point (1 — z)i(e) + xt(e)
on an edge e, 0 < x < 1, define

P((1 —x)i(e) + zt(e)) :== (1 — z)P(i(e)) + zP(t(e)) =
(8) P(i(e)) + z[P(t(e)) — P(i(e))] = P(i(e)) + zc(e).
0

The interior of each edge e in I" has the standard basis canonically determined by the

orientation on e. The restriction of the potentia,lj5 to I'\ T can be viewed as a O-form.

We denote ¢, the differential of P, i.e. ¢, := %—];dx is a 1-form on T'\ I'® and (8) says
that, when restricted to an edge e, ¢, is a constant form equal to c(e)dz. Actually, . can
be defined for any 1-cochain ¢ this way: c(e)dz on each edge e. If U C T is a subgraph,

then it makes sense to integrate ¢. over U defining
/ Pe = Z / Pe-

Here U Niint(e) is given the orientation with respect to U. The following lemma is just
the fundamental theorem of calculus for a piecewise constant function.

Lemma 11. Let ¢ be a I-coboundary on I'. If 7y is a piecewise linear path going from a
point x to a point y in I, then fv v. = P(y) — P(x). In particular, f7 . does not depend
on the choice of .

Lemma 12. Let ¢ be a 1-cochain on I'. Then

(a) /goc §/ |oe|, for any subgraph U of T', and
U U]

(b) |c|1 = |oc|, where | - |1 is the {y-norm on Cy(I',R) with respect to the standard
I

basis.
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S PN ARCED>
e€E(T) Unint(e)

Proof. (a)
oo for®

Z/ I%IZ/ I%IZ/ .
|Unint(e)| |[U\L(®)] |U|

ecE(T)

©) is of Lebesgue measure 0.

=Y lell= Y [ led= - el

ecE(D) ecE(T) le]
Lemma 12 is proved. O

The last inequality holds because I

(b)

Definition 13. A connected locally finite graph I' is called one-ended if for any bounded
set K C T there exists a bounded set K' C T so that K C K" and I'\ K’ is nonempty and
connected. A finitely generated group is called one-ended if its Cayley graph with respect
to a finite generating set is one-ended.

Let BY(T',R) be the space of all 1-coboundaries of compact support, and BL, (T",R) be

the space of all summable 1-coboundaries on I', i.e. BL (I',R) = B}, R) N C(ll)(F,R),

sum

equipped with the ¢;-norm. Obviously, B{(I',R) C BL (T',R). We denote by B}(I',R)

sum

the closure of B;(I',R) in C;,(I',R), the space of summable 1-cochains.

Proposition 14. If T is a one-ended graph then Bl, (I',R) C B}(T,R).

sum

Proof. We need to show that any summable 1-coboundary on I' can be approximated in
{1-norm by 1-coboundaries of compact support.

Since I' is one-ended, it must be unbounded. Let ¢ be a summable 1-coboundary on I'
and P be its potential function with respect to the base point *. P may be thought of
as a function I' — [—o0, 00|, where [—00, 00| is the two-point compactification of R. For
t € [~o00, 0] define U, := P~!([~o00,t]) and V; := P7}([t,00]) (see Fig.2). In particular,
U_o = 0 and V,, = 0 because P(z) is always a real number. Let

u = {t € [—00, 00| | Uy is bounded},
v:={t € [~00,00] | V} is bounded}.

Lemma 15. Let I' be an connected, infinite, locally finite graph, and uw and v be as above.
Then the following properties are satisfied.

(a) —oco € u and oo € v.
(b) The sets u and v are disjoint non-degenerate subintervals of [—oo, 00].
(¢) If T is one-ended, then supu = infv € (—o0, 00).
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— 00

FIGURE 2. The sets U, and V.

Proof. (a) The sets U_., and V,, are empty and hence bounded.

(b) If there were t € u Nw, it would imply that I' = U, UV, is bounded, therefore T is
a finite graph, which is not the case. So v and v are disjoint.

If t € u then U; is bounded and, for any s with —oo < s <'t, Uy C U, is bounded. It
means that u is a subinterval of [—o00, 00] containing —oco. Moreover, u is a non-degenerate
interval, because | P| is bounded by the ¢;-norm of c¢. Analogously, v is a non-degenerate
subinterval of [—o0, 00| containing oo.

(¢) Denote a := supu, b := infv. As we just saw, a and b are real numbers. Since u
and v are disjoint, a < b. Suppose a < b. Pick some a’ and ¥ so that a < a’ < b < b.
Then the sets P~([—o0, a’)) and P~*((a’, 00]) are unbounded and P~!(a’) separates them
from each other. Hence P~!(a’) is unbounded, since I' would not be one-ended otherwise.
Analogously, P~1(¥') is unbounded.

Now we choose arbitrary points z; and y; in P~(a') and P~1(¥), respectively, and
connect x1 to y; by a piecewise linear path p;. It is possible to do because P~!(a’) and
P~1(V') are non-empty and I is connected. By removing loops we can assume that p; is
injective. Since I' is one-ended, there is a bounded set K; containing (the image of) p;
so that I'\ K; is connected. Since P~1(a’) and P~*(V) are unbounded, we can choose
points 5 and g, in P~%(a’) \ K; and P~(¥) \ K, respectively, and connect x5 to y, by
an injective path ps in I' \ K. Choose a bounded K, containing p; and p,, and so on.
In this way we obtain an infinite collection of disjoint paths p; connecting x; to y;, where
P(z;) = @’ and P(y;) = V. Since p;’s are injective, they can be viewed as subgraphs of T
Then, using lemmas 12 and 11,

[
Di

= [led2 [ ted=3 [ ledzY
r Uilpil PR i
> |P(y;) = Pzi)| = ) _ |V — a'| = oo

>

This contradicts the assumption that ¢ is summable. Lemma 15 is proved. O
We have a = supu = infv € (—o0,00). Pick an increasing sequence —oo = sy <
s1 < 89 < ... in u and a decreasing sequence co = ty > t; > ty > ... in v so that
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limy oo Sk = @ = limy oo tr. Let Wy := U, UV, and define the functions ¢, : I' — R to
be equal to ¢, on Wy and 0 on I\ Wj. Note that W}, is a subgraph and it is bounded
because s, € u and t; € u.

Lemma 16. For any directed edge loop v in I, fv U = 0.

o
Za VR

]
(673 ‘/t

U, N

\
NN

FicUre 3. The subdivision of ~.

Proof. The loop 7 can be subdivided as a concatenation of several piecewise linear paths:
paths {a;} with the images in Wy, = U,, UV, , paths {(;} with the images in I'\ W}, going
from OUj, to dV;,, and paths {;} with the images in I' \ W}, going from 9V, to 90U,
(see Fig. 3). Note that #{3;} = #{8;} because U,, and V; are disjoint. The potential
of OUj, is s; and the potential of OV}, is ¢;. Lemma 11 says that the integral of ¢, along
any edge loop is 0, so

Oz/wsoczzi:/aisoﬁzj:/ﬁjgoﬁzj:/;%:
;Aiwk+2(tk—sk)+2(sk—tk):Zi:/aiq/)k_/ﬂk_

The last equality holds because 1, vanishes outside U, U V;,. Lemma 16 is proved. [
For each k define a 1-cochain ¢; on I' by the rule cx(e) := fint(e) U, and extending by

linearity. Then, for any edge loop ~ in I', by Lemma 16,

o)=Y =Y [v= [w=o0
ecy ecy € v

In other words, ¢, vanishes on 1-cycles. Hence it admits a potential, i.e. ¢ is a 1-

coboundary. The value ¢ (e) is not 0 only for the edges e intersecting the support Wy, of

Y. There are only finitely many such, so ¢; has compact support. To finish the proof of

Proposition 14 it only remains to show the following.

Lemma 17. The sequence ¢, converges to ¢ in the {1-norm.
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Proof.

c—ah= > lee)—al@l= > -

ecE(T) e€E(T)

[ ee—w
int(e)
because . and 1 coincide on Wy and 9 is 0 on T\ Wy,

0 = / o] < / |soc|:/ 0ol = / .
Z int(e)\Wg ez lint(e)\Wyg| [T\ W] ; Wi \W;|

e€E(l) €BE)

(Note that the domains of integration are subgraphs of T', so the integrals make sense.)
Also, |T| = U2, WiIlUP~Ha) = UZy Wisr \ WilU P~ (a). All the points in P~'(a)
have the same potential a, so ¢, is identically zero on the edges contained in P~'(a).
Then

10) e = / o] = / o] + / Ted = / e,
Z Wi\ W] |P=1(a) Z Wi \Wy|

so the last series converges since ¢ is summable. Puttmg equahtles (9) and (10) together

we obtain
lim |¢ — ¢kl = hm / loe| = 0.
koo heo ; Wi\ Wi
This finishes the proof of Lemma 17 and Proposition 14. O

5. 3-MANIFOLDS.

This section is devoted to proving the following theorem.

Theorem 18. If G is the fundamental group of a closed 3-manifold, then HT(Ll)(G, R) =0
for any n > 1.

Proof. Let M be the closed 3-manifold whose fundamental group is G.

Step 1. First we prove the theorem assuming that M is orientable, closed, and prime.
Triangulate M and put the triangulation on the universal cover M induced by the pro-
jection M — M.

If M is a 2-sphere bundle over a circle, then G = Z, and the theorem follows since Z
admits a K (G, 1) of dimension 1. So we can assume that M is not a 2-sphere bundle over
a circle, and M is prime. In this case M is irreducible [7, Lemma 3.13], therefore, by the
sphere theorem, mo(M) is trivial.

If G is finite, then M has a finite triangulation, and the theorem obviously follows since
any summable chain in M has finite te support. So we can also assume that G is infinite.
In this case m3(M) = m3(M) = H3(M,Z) = 0.

Since mo(M) and m3(M) are trivial, then, by Hurewicz theorem, M is a (compact)
simplicial complex of type K(G,1), so I:Lgl)(G,R) = FIS)(]\A/.?, R). Also, G has finite

cohomological dimension, hence it is torsion free.
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The vanishing of H fl) (G, R) was shown by Allcock and Gersten in [1]. Also, H; (M) (G,R) =
0, because any 3-cycle on M must take the same (up to a sign) value on each 3-cell, and
there are infinitely many 3-cells in M so any summable 3-cycle on M must be 0. It
remains only to prove the theorem for i« = 2. We need to show that any summable 2-cycle
on M can be approximated in /;-norm by cycles of compact support.

Let T be the I-skeleton of the dual cellulation on M. Each 2-cell & of M corresponds
to an edge f(o) in I', and since M is orientable we can consistently orient the edges of
I'. This correspondence f extended by linearity gives a homomorphism f : C’él)(]\? ,R) —
C(ll)(F, R). Note that f is an isomorphism of normed spaces by definition.

Pick z € 02(1)(]\7, R). Then f(z) is a 1-cochain in the dual cellulation of M. For z to
be a cycle is equivalent to the vanishing of f(z) on 1-boundaries in the dual cellulation.
These 1-boundaries are the same as 1-cycles, since M is simply connected. In other words,

z is a summable 2-cycle on M if and only if f(z) is a summable coboundary on T, i.e. f
induces an isometric isomorphism

f:Z89(M,R) — B, (T,R).

sum

Analogously for chains of finite support, f induces an isometric isomorphism
f: Zo(M,R) — B!(I'\R),

and we have a commutative diagram

Zo(M.R) — Z{"(M,R)
gif glf
B{T\R) — B (I\R)

sum

where the columns are isomorphisms. Once we know that I' is one-ended, Proposi-
(I,R) C BYI',R), hence Z$"(M,R) C Zy(M,R), and by (5),
Z <1)(M R) = ZQ(M R). The property of being one-ended is quasiisometry invariant for
connected graphs, so it remains to show that the group G is one-ended.

Suppose G is not one-ended. Then the number of ends must be 0, 2, or co. It is not 0
in our case since the group is infinite. J. Stallings showed

tion 14 will 1mply B!

sum

Theorem 19 (Stallings [8]). Let G be a finitely generated torsion free group. Then
e (G has two ends if and only if G = 7Z, and
e (G has infinitely many ends if and only if G' is a non-trivial free product.

By our assumptions G' # Z, and in the case of infinitely many ends the splitting of GG
as a non-trivial free product can be realized as a connected sum M = M;§Ms, where
m1(M;) and 71 (Mz) are non-trivial [7, Theorem 7.1]. In particular, M is not prime, that
contradicts our assumptions. This establishes Step 1.

Step 2. General case: M is any closed 3-manifold.

Since Hél)(G, R) is quasiisometry invariant, it is not changed by passing to a subgroup
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of finite index. Therefore, replacing M with the double covering we can assume that M
is orientable. There is a finite set of embedded spheres cutting M into prime pieces M;,
i=1,..,m. Let M; be the closed manifold obtained by gluing 3-balls to each boundary
component of M;. Denote G; := 71 (M;) = Wl(Mi). Then G decomposes as a finite graph
of groups with some vertex groups I'; and trivial edge groups. We know from Step 1 that

H2(1)(Gi, R) = 0. It remains to show the following.

Lemma 20. Let G be the fundamental group of a finite graph of groups with the trivial
edge groups and such that each vertex group G; is finitely presentable and Hél)(Gi, R) = 0.
Then HSV(G,R) = 0.

Proof. Pick a K(G;,1) complex Z; for each G;. Let Z’ be the cell complex obtained
by connecting the complexes Z! according to the graph of groups decomposition. Then
m(Z2") = G and Z' is a K(G, 1) complex, so the universal cover Z := Z' can be used to
compute HQ(D(G, R).

Let {Z; | 5 = 1,2,3,...} be the set of all the lifts of complexes Z to Z. If c is a
summable 2-cycle in Z, it decomposes as the sum ¢ = @;c;, such that c¢; is a summable
2-cycle supported on Z;. Since each Z; is the universal cover of some Z;, then each ¢; can
be approximated by compactly supported cycles, and therefore ¢ can be approximated by
compactly supported cycles in X. This finishes Lemma 20 and Theorem 18. O 0

6. QUESTIONS.

The original question still remains open in general:
Question 1 (Gersten). If G is a group of type F,,, does FIZ-(U(G,R) vanish fori < n?
Another interesting question to consider would be the following.

Question 2. For the Thompson’s group F', is there any integer 1 > 2 such that

Hi(l)(G, R) # 07 FEquivalently, is there a summable i-cycle in the universal covering
of a K(F,1) complex, which cannot be approzimated by i-cycles of compact support?

If the answer is “yes”, then Theorem 5 will imply that the Thompson’s group is not
combable, in particular, not automatic.
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