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Abstract. Submultiplicativity, an analytic property generalizing the Strengthened Hanna
Neumann Conjecture (SHNC) to complexes was proved in [2] assuming the deep-fall property.
This in particular implied SHNC. The purpose of this note is to write the proof of the original
SHNC and purely in terms of groups and graphs. We also give explicit examples showing that
the upper bound in SHNC is sharp.
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1. Introduction.

The reduced rank of a free group Γ is the number r̄(Γ) := max
{

0, rkΓ− 1
}

[5, p. 162]. With
this notation, the Hanna Neumann Conjecture (HNC) can be stated as follows.

Conjecture (HNC [3, 4]). Suppose Γ is a free group and A and B are its finitely generated
subgroups. Then r̄(A ∩ B) ≤ r̄(A) · r̄(B).

Walter Neumann proposed the following Strengthened Hanna Neumann Conjecture (SHNC).
Let A\Γ/B be the set of all double cosets AgB for g ∈ Γ and s : A\Γ/B → Γ be a section of
the quotient map Γ → A\Γ/B. Denote Au := u−1Au.

Conjecture (SHNC [5]). Suppose Γ is a free group and A and B are its finitely generated
subgroups. Then

∑

u∈s(A\Γ/B) r̄(A
u ∩B) ≤ r̄(A) · r̄(B).

In [2], a proof of submultiplicativity for complexes was given under an additional assumption:
the deep-fall property. See also references to results on SHNC there. The deep-fall property
always holds for graphs, this was proved in [2] by graph-theoretic means. That in particular
implied SHNC. The deep-fall property is also related to the Atiyah Conjecture.

After [2] was posted, Warren Dicks asked the author to write a purely combinatorial proof
of the original SHNC. This note presents a self-contained proof of SHNC that does not use
analysis; it follows the outline of [2]. We give an explicit description of leafages introduced
in [1]. Leafages and left orderability are used to prove SHNC. In section 1.7 we also provide
explicit examples showing that the upper bound in SHNC is sharp. Theorem 4 below and its
generalization to complexes of any dimension was proved in [2, Proposition 10] by analytic
means. The combinatorial proof of Theorem 4 for graphs presented below is based on the proof
that Dicks subsequently sent to the author. Dicks’ argument was for bi-orderable groups, the
author generalized it to left-orderable groups. The author would like to thank Warren Dicks for
the suggestions. A proof of SHNC has also been announced by Joel Friedman. This research
is partially supported by the NSF grant DMS 07-06876. The author would also like to thank
Ivan Mineyev for providing a leaf sample for the above picture.

1.1. Graphs and relative graphs. The edges in graphs will be assumed to be oriented, and
all actions and graph maps will be required to preserve the orientations of edges. Let Ŷ be

any graph. Denote V Ŷ and EŶ the sets of vertices and edges of Ŷ , respectively. We view Ŷ

formally as the union V Ŷ ⊔EŶ . For σ ∈ EŶ , σ− and σ+ denote the initial and terminal vertices
of σ, respectively. Comp(Y ) is the set of connected components of Y .

A path p in a graph Ŷ from a vertex v to a vertex v′ is a formal sequence of vertices and

edges v = v0, σ1, v1, . . . , vn−1, σn, vn = v′ such that vi ∈ V Ŷ , σi ∈ EŶ , and (σ−
i = vi and σ+

i =
vi−1) or (σ

−
i = vi−1 and σ+

i = vi). Define infinite paths similarly. If p is a path as above, the
path v′ = vn, σn, vn−1, . . . , v1, σ1, v0 = v will be denoted p−1.

For a subset E ⊆ EŶ , the relative graph is Ŷ (E) := V Ŷ ⊔E. For a vertex v, Ŷ (E, v) denotes

the relative component, that is the connected component of Ŷ (E) containing v [2, section 6.2].
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Γ will be any group; we will not require Γ to be finitely generated or ordered. A Γ-graph is

a graph with a left Γ-action. A Γ-graph will be called free-edge if the induced Γ-action on EŶ

is free. A Γ-graph is free if the Γ-action on Ŷ is free.

1.2. Gardens and essential sets. The reduced rank of a finite graph Y is the number
r̄(Y ) :=

∑

K∈Comp(Y ) max{0,−χ(K)}, where χ is the Euler characteristic. In particular,

r̄(∅) = 0. This is consistent with the definition for free groups: if Y is nonempty, then
r̄(Y ) =

∑

K∈Comp(Y ) r̄(π1(K)). With a bit of work this notion can be generalized to infinite
graphs, if needed.

A tree is a contractible graph. A forest is a disjoint union of trees. A flower is a graph
homotopy equivalent to a circle. A garden is a disjoint union of trees and flowers [1, section 5.1].

Essential sets of edges were defined in [1, subsection 5.3]. An edge σ in a finite graph Y is
called essential in Y if r̄(Y \ {σ}) = r̄(Y )− 1. More generally, a set of edges E ⊆ EY is called
essential in Y if r̄(Y \ E) = r̄(Y )−#E. A maximal essential set is just what it says.

There are several characterizations of essential sets and maximal essential sets (see [1,
Lemma 12]). In particular, a set E ⊆ EY is maximal essential if and only if r̄(Y \ E) =
r̄(Y ) − #E = 0; so for any maximal essential set E we have r̄(Y ) = #E. Also, E ⊆ EY is
essential in Y if for each σ ∈ E, the component of Y \ E containing σ− is not a tree and the
component of Y \E containing σ+ is not a tree. This is shown by removing edges in E one by
one and checking that the reduced rank of the finite graph decreases exactly by 1 at each step.

1.3. Leafages and systems. A leafage is a map between complexes whose restriction to each
component in its domain is injective [2, section 4]. (The components of the domain are viewed
as “leaves” as on the picture below.)

Let Γ, A, B be as in the statement of SHNC. Let X̂ be the Cayley graph of Γ with respect
to some basis. If A is trivial, let A be the empty set. If A is nontrivial, let A be any nonempty
A-invariant subtree of Γ such that the A-action on A is cocompact. For example, we can make

some choice of a basepoint y0 in V X̂ , pick a path from y0 to ay0 for each a in a finite generating
set of A, and let A be the onion of all the A-translates of these paths. Since A is simply
connected, A is the fundamental group of the finite quotient A\A.

We make translates of A in X̂ formally disjoint as follows. For y ∈ Γ/A, yA will mean the

subgraph ȳA ⊆ X̂, where ȳ is any representative of the left coset y. The induced graph is

Ŷ := {(y, σ) ∈ (Γ/A)× X̂ | σ ∈ yA}.
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A leaf in Ŷ for y ∈ Γ/A is the graph Ŷy := {(y, σ) | σ ∈ yA} ⊆ Ŷ . Ŷ is the disjoint union of

its leaves, Ŷ =
⊔

y∈Γ/A Ŷy. The map

α̂ : Ŷ → X̂, α̂(y, σ) := σ,

is a leafage. We put the diagonal Γ-action on Ŷ : g(y, σ) := (gy, gσ) for g ∈ Γ, (y, σ) ∈ Ŷ . This
turns α̂ into a Γ-leafage, i.e. a leafage commuting with the Γ-actions.

X̂

Ŷ

leafage

The Γ-action on Ŷ is free and it permutes the leaves of Ŷ , i.e. it induces a Γ-action on
Leaves(Ŷ ), the set of leaves of Ŷ , by the formula gŶy = Ŷgy. The stabilizers of leaves are

conjugates of A: StabΓ(Ŷy) = Ay−1

, where Ay−1

is the notation for Aȳ−1

= ȳAȳ−1 for any choice

of ȳ ∈ y. A can be identified with the leaf Ŷ1A of Ŷ via the inclusion A →֒ Ŷ , σ 7→ (1A, σ).

Hence the quotient Y := Γ\Ŷ is isomorphic to A\Ŷ1A = A\A.

Similarly, for the subgroup B ≤ Γ define a B-invariant subtree B ⊆ X̂ , the induced graph Ẑ,
and the Γ-leafage β̂ : Ẑ → X̂ . Let Ŝ be the fiber product

Ŝ

µ̂
��

ν̂ // Ẑ

β̂
��

Ŷ
α̂ // X̂

(cf. [2, section 2.2]). Explicitly, Ŝ = {(y, z, σ) | (y, σ) ∈ Ŷ , (z, σ) ∈ Ẑ}, µ̂(y, z, σ) := (y, σ),

ν̂(y, z, σ) := (z, σ). For y ∈ Γ/A and z ∈ Γ/B, let Ŝy,z be a copy of the intersection α̂(Ŷy) ∩

β̂(Ẑz) = yA ∩ zB. Ŝ is the disjoint union of such: Ŝ =
⊔

y,z Ŝy,z. All the arrows in the

above diagram are Γ-leafages. The free Γ-actions on X̂, Ŷ , and Ẑ induce a free Γ-action on Ŝ.
Explicitly, g(y, z, σ) := (gy, gz, gσ) for (y, z, σ) ∈ Ŝ, g ∈ Γ. The Γ-action on Ŝ is free and it

induces a Γ-action on Leaves(Ŝ), the set of leaves of Ŝ, by the formula gŜy,z = Ŝgy,gz. The

stabilizers of leaves in Ŝ are intersections of stabilizers: StabΓ(Ŝy,z) = Ay−1

∩Bz−1

.

Lemma 1. r̄(A\A) = r̄(A), r̄(B\B) = r̄(B), r̄
(

(Ay−1

∩Bz−1

)\(yA∩zB)
)

= r̄(Ay−1

∩Bz−1

).

Proof. If the tree A is nonempty, then A is the fundamental group of A\A, so by the definition
of reduced rank, r̄(A\A) = r̄(A). If A is empty, then A is trivial by the definition of A, so
the same equality holds: r̄(A\A) = r̄(∅) = 0 = r̄(1) = r̄(A). The equality for B is similar. If

yA∩ zB 6= ∅, the third equality holds by the same argument. If yA∩ zB = ∅, then Ay−1

∩Bz−1

is trivial; otherwise there would be a nontrivial element g ∈ Ay−1

∩Bz−1

, and therefore the axis
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of g in X̂ would be contained in yA∩ zB. Hence the equality holds in this empty case as well:
r̄
(

(Ay−1

∩ Bz−1

)\(yA∩ zB)
)

= r̄(∅) = 0 = r̄(1) = r̄(Ay−1

∩ Bz−1

). �

Denote S := Γ\Ŝ. This gives the system of graphs

(1) S ν
//

µ

��

Z

β

��

Ŝ

pS

__❄
❄

❄

❄

❄

❄

❄

❄

µ̂

leafage

��

ν̂ leafage
// Ẑ

pZ

``❆
❆

❆

❆

❆

❆

❆

❆

β̂
leafage

��

Y α
// X

Ŷ

pY

__❄
❄

❄

❄

❄

❄

❄

❄

α̂ leafage
// X̂.

pX
``❆
❆

❆

❆

❆

❆

❆

❆

as in [1, sections 3.1 and 3.6]. The diagonal arrows are Γ-quotient maps. S is the fiber product
of Y and Z over X ; such fiber products of finite graphs were considered by Stallings [7].

To prove SHNC, we will make a consistent choice of maximal essential sets in Y , Z, and S
using leafages and left-invariant orders.

1.4. The fall. Let Ŷ be a locally finite graph. Given an edge σ ∈ EŶ and a set of edges

E ⊆ EŶ \ {σ}, we say that σ falls into E if the components of the relative graph Ŷ (E)
containing σ− and σ+ are infinite or coincide (cf. [2, Definition 2(a) and Lemma 21]). A vein
at σ in E is either

(a) a path in Ŷ (E) without self-intersections from σ− to σ+, called a finite vein, or

(b) a union of two disjoint infinite rays in Ŷ (E) without self-intersections starting at σ−

and σ+, respectively, called an infinite vein.

It is easily checked that σ falls into E if and only if there exists a vein at σ in E. If Ŷ is a
forest, all veins are infinite.

1.5. Ordered graphs. A graph Ŷ will be called ordered if EŶ is given a partial order ≤ whose
restriction to EK is a total order for each component K of Ŷ .

An ordered Γ-graph is a Γ-graph that is ordered and such that the partial order on its edge
set is preserved by the Γ-action. For example, if Γ is a left-ordered group and Ŷ is a free

Γ-graph, we can turn Ŷ into an ordered Γ-graph by picking any Γ-transversal subset ĒŶ in EŶ ,

putting any total order on it, and taking either lexicographic order on EŶ = ΓĒŶ ∼= Γ × ĒŶ .
Free groups are left-orderable, and even two-sided orderable ([6, p.155-157], [8, p.165]), so the
Cayley graph of a free group with respect to any basis can be viewed as a free ordered Γ-tree.

For a subset E ⊆ EŶ and an edge σ ∈ EŶ \ E, denote [E < σ] := {τ ∈ E | τ < σ}.

We say that an edge σ in Ŷ is order-essential in Ŷ if it falls into [EŶ < σ], and order-

inessential otherwise. Note that this property is not affected if Ŷ is replaced with its component
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containing σ. Denote by E
Ŷ and I

Ŷ the sets of order-essential and order-inessential edges in Ŷ ,
respectively. The following lemma is immediate.

Lemma 2. Let Γ be any group, Ŷ be an ordered Γ-graph, A be a subgroup of Γ, and A be an
A-invariant subgraph of Ŷ . Then

(a) A is an ordered A-graph with respect to the partial order on EA restricted from EŶ ,

(b) E
A and I

A are A-invariant subsets of Ŷ , and

(c) E
A ⊆ E

Ŷ .

Proposition 3 (The deep-fall property for graphs). Suppose Ŷ is a locally-finite ordered graph.

If σ ∈ E
Ŷ , then σ falls into [IŶ < σ].

Proof. (cf. [2, lemmas 16 and 23, Theorem 24]) Since Ŷ is locally finite, replacing Ŷ with its

component containing σ we can assume that Ŷ is countable, and that the order on EŶ is total.

Since σ ∈ E
Ŷ , σ falls into [EŶ < σ]. Enumerate the set [EŶ < σ] as {σ1, σ2, . . .}. For each

n ≥ 1, do the following. Since the order on EŶ is total, we can relabel the set {σ1, . . . , σn} as

{τ1, . . . , τn} so that τ1 > . . . > τn. Since τ1 ∈ E
Ŷ , then there is a vein at τ1 in [EŶ < τ1], hence

in [EŶ < σ] \ {τ1}. Take any vein at σ in [EŶ < σ]. If this vein contains τ1, replace τ1 with the

vein at τ1 in [EŶ < τ1], then remove self-intersections if needed. The result is a subgraph of Ŷ .

The components of this subgraph containing σ− and σ+ form a vein at σ in [EŶ < σ] \ {τ1}.
Repeat this for τ2, τ3 etc, inductively to obtain a vein at σ in

[EŶ < σ] \ {τ1, . . . , τn} = [EŶ < σ] \ {σ1, . . . , σn}.

This gives a vein at σ in [EŶ < σ] \ {σ1, . . . , σn} for each n ≥ 1. Either this sequence of
veins consists of finite veins of uniformly bounded lengths or there is a subsequence of (finite

or infinite) veins at σ whose lengths converge to ∞. Since Ŷ is locally finite, all of the order-
essential edges in an arbitrarily large ball around σ will be removed at some finite stage. By
taking a subsequence we can assume that either the sequence of veins stabilizes at a finite vein

at σ in [EŶ < σ] or the initial segments of those veins in [EŶ < σ] of any fixed length eventually
stabilize in the sequence. In the former case there is a limiting finite vein, and in the latter case

there is a limiting infinite vein. In either case, the limiting vein will be in [EŶ < σ]\{σ1, . . . , σn}

for each n, hence in [IŶ < σ]. Thus σ falls into [IŶ < σ]. �

Theorem 4. Let Γ be any group and Ŷ be a free cocompact ordered Γ-graph all of whose edges
are order-inessential. Then Ŷ is a forest and r̄(Γ\Ŷ ) = 0.

Proof. (cf. [2, Proposition 10]) If Ŷ is not a forest, it has a simple non-trivial loop. This loop

lies in a component of Ŷ , and the order on the edges of the component is total, so there is the

maximal edge τ in the loop. The rest of the loop forms a finite vein at τ in [EŶ < τ ], hence τ

is order-essential in Ŷ , which contradicts the assumptions.
Let Ŷ ′ be a component of Ŷ and denote Γ′ := StabΓ(Ŷ

′), Y ′ := Γ′\Ŷ ′. Then Y ′ is a

component of Γ\Ŷ , so it suffices to show that r̄(Y ′) = 0 (i.e. Y ′ is a tree or a flower). Since Ŷ ′
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is simply connected and Γ′ acts freely on it, then Γ′ is the fundamental group of Y ′. Suppose
that r̄(Y ′) 6= 0, then Γ′ has rank at least two. Take any two elements g and h of some basis

in Γ′. Let lg and lh be their axes in Ŷ ′, i.e. biinfinite periodic concatenations

. . . · g−2p · g−1p · p · gp · g2p · . . . and . . . · h−2q · h−1q · q · hq · h2q · . . .

without cancellations, where p and q are some finite paths in Ŷ ′.
Let Ep be the set of edges in p. Since p lies in a component of Ŷ , the restriction of the

order on EŶ to Ep is total, so there is a maximal edge ξ in Ep. We have gξ 6= ξ since g is a
basis element and the action is free. Assume that ξ > gξ, then by the left-invariance of the
order, . . . > g−2ξ > g−1ξ > ξ > gξ > g2ξ > . . . . For each τ ∈ Ep \ {ξ} we have ξ > τ ,
hence gnξ > gnτ for all n ∈ Z. This shows that for each n ∈ Z, gnξ is the largest edge in
the ray gnp · gn+1p · gn+2p · . . . . By removing some initial edges and cyclically relabeling the
path p we can assume that gnξ is the initial edge in this ray. Now assume that ξ < gξ, then
· · · < g−2ξ < g−1ξ < ξ < gξ < g2ξ < . . . and gnξ > gnτ for τ ∈ Ep \ {ξ} as before. This shows
that gnξ is the largest edge in the ray . . . · gn−2p · gn−1p · gnp, and we can assume that gnξ is
the terminal edge in it.

The same can be done for h and lh: let η be the maximal edge in q, and write similar
inequalities. We assume that ξ > gξ and η > hη; the other three cases are similar. We have
two rays

gnp · gn+1p · gn+2p · . . . and hkq · hk+1q · hk+2q · . . .

whose initial edges gnξ and hkη are the largest edges of the two rays, respectively. Since g and
h are different basis elements, these two rays eventually become disjoint as n and k increase.
Connect the initial vertices of these two rays by a path, remove self-intersections and take k and
n sufficiently large to obtain a biinfinite path . . .·gn+2p−1 ·gn+1p−1 ·gnp−1 ·r ·hkq ·hk+1q ·hk+2q ·. . .
without cancellations, where r is some finite path. Let ω be the maximal edge among the edges
in r and the edges gnξ and hkη, then every edge in the above biinfinite path other than ω is
strictly smaller than ω, hence ω is order-essential, which contradicts the assumptions. �

Remark. Under the assumptions of Theorem 4 we can say more. The condition r̄(Y ) = 0

implies that Y is a finite garden. Each component K of Ŷ is the universal cover of a component
of Y , hence K must be either a finite tree with trivial stabilizer or the universal cover of a finite
flower, i.e. a quasiline, with stabilizer Z. In short, “Ŷ universally covers a garden.”

Theorem 5. Let Γ be any group, Ŷ be a free cocompact ordered Γ-forest, Y := Γ\Ŷ , EY :=

Γ\EŶ . Then E
Y is a maximal essential set in Y . In particular, r̄(Y ) = #E

Y .

Proof. (cf. [2, Lemma 28]) Denote I
Y := Γ\IŶ . Take any σ ∈ E

Ŷ . By the deep-fall property, σ

has a vein in [IŶ < σ]. Since Ŷ is a forest, this vein must be infinite, hence each ray of this vein

maps non-injectively into the finite quotient Y (IY ) = Y \ EY . Since the Γ-action on Ŷ is free,

the quotient map Ŷ → Y is a covering, then the image of each ray in the vein via the quotient
map will have at least one loop in Y (IY ), so the component of Y (IY ) containing q(σ−) is not a
tree, and similarly for σ+. By the observation at the end of 1.2, EY is essential in Y .
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The edges in I
Ŷ are order-inessential in Ŷ , hence they remain order-inessential in the smaller

graph Ŷ (IŶ ). Theorem 4 says that r̄(Y (IY )) = 0, hence E
Y is maximal in Y . �

Remark. If Ŷ be a free cocompact ordered Γ-graph (not necessarily a forest), then E
Y contains

a maximal essential set of Y , so r̄(Y ) ≤ #E
Y . This can be deduced by a similar argument.

1.6. The proof of SHNC. Consider a system as in (1). Put a Γ-invariant order on EX̂ as

in 1.5. Pull back this order from X̂ to each leaf of Ŷ , Ẑ, Ŝ via the leafages α̂, β̂, α̂ ◦ µ̂. Recall
that E

Ŷ is the set of order-essential edges in Ŷ . Denote E
Y := Γ\EŶ ⊆ EY , and similarly

for EZ and E
S. Lemma 2(c) impies that leafages map order-essential edges to order-essential

edges, so µ̂(EŜ) ⊆ E
Ŷ and ν̂(EŜ) ⊆ E

Ẑ . Taking the Γ-quotients yields the diagram

(2) E
S

ν
//

µ

��

E
Z

E
Ŝ

aa❇
❇

❇

❇

❇

❇

❇

❇

µ̂

��

ν̂
// EẐ

``❇
❇

❇

❇

❇

❇

❇

❇

E
Y

E
Ŷ

aa❇
❇

❇

❇

❇

❇

❇

❇

which is part of the system (1).

The proof in a nutshell. S is the fiber product of Y and Z over X . In particular, µ and ν in (1)
induce an inclusion ϕ : ES →֒ EY ×EZ . Then the restricted versions of µ and ν above induce
an inclusion ϕ : ES →֒ E

Y ×E
Z . This implies the inequality #E

S ≤ #E
Y ·#E

Z . By Theorem 5,
r̄(S) ≤ r̄(Y ) · r̄(Z). This is equivalent to SHNC. �

The detailed proof. Consider the diagonal inclusion ϕ̂ : EŜ → EŶ × EẐ , ϕ̂(τ) := (µ̂(τ), ν̂(τ)).

Explicitly, ϕ̂(y, z, σ) := ((y, σ), (z, σ)) for (y, z, σ) ∈ Ŝ. Since both µ̂ and ν̂ commute with the
Γ-actions, then ϕ̂ induces a map ϕ : ES → EY ×EZ on the Γ-quotients.

We claim that ϕ is injective. Take any (y, z, σ), (ỹ, z̃, σ̃) ∈ Ŝ and suppose that (ỹ, σ̃) =

(gy, gσ) and (z̃, σ̃) = (hz, hσ) for some g, h ∈ Γ, then gσ = hσ. Since the Γ-action on X̂ is free,
g = h. This implies (ỹ, z̃, σ̃) = (gy, gz, gσ), i.e. (y, z, σ) and (ỹ, z̃, σ̃) lie in the same Γ-orbit. So
ϕ is injective.

Now consider only order-essential edges. By Lemma 2(c), the restriction of ϕ̂ to E
Ŝ takes

values in E
Ŷ × E

Ẑ , i.e. gives a map ϕ̂ : EŜ → E
Ŷ × E

Ẑ . By the above argument the induced
map on the quotients, ϕ : ES → E

Y ×E
Z , is injective. Then #E

S ≤ #E
Y ·#E

Z . By Theorem 5
and Lemma 1, r̄(S) ≤ r̄(Y ) · r̄(Z) = r̄(A\A) · r̄(B\B) = r̄(A) · r̄(B).
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It remains to show the equality r̄(S) =
∑

u∈s(A\Γ/B) r̄(A
u∩B). Put the left diagonal Γ-action

on the set (Γ/A)× (Γ/B) and consider the map

θ : s(A\Γ/B) → (Γ/A)× (Γ/B), θ(u) := (u−1A, 1B).

It is clear that θ is injective. We claim that its image intersects each Γ-orbit in (Γ/A)× (Γ/B)
exactly once. Take any element of (Γ/A)× (Γ/B), it has the form (ȳA, z̄B) for some ȳ, z̄ ∈ Γ.
There exists u ∈ s(A\Γ/B) such that ȳ−1z̄ ∈ AuB. Hence there exist a ∈ A and b ∈ B such
that z̄b = ȳau. Then z̄b · (u−1A, 1B) = (ȳauu−1A, z̄bB) = (ȳA, z̄B), so the Γ-orbit of (ȳA, z̄B)
contains (u−1A, 1B). Now suppose u, ũ ∈ s(A\Γ/B), g ∈ Γ, and g · (u−1A, 1B) = (ũ−1A, 1B),
then g ∈ B and for some a ∈ A, u = a−1ũg ∈ AũB, hence u = ũ. This shows uniqueness.

The above claim shows that the set {Ŝu−1A,1B | u ∈ s(A\Γ/B)} has exactly one leaf in each

Γ-orbit in Leaves(Ŝ). The stabilizer of the leaf Ŝu−1A,1B is Au ∩ B, hence

S = Γ\Ŝ = Γ\
(

⊔

(y,z)∈(Γ/A)×(Γ/B)

Ŝy,z

)

=
⊔

u∈s(A\Γ/B)

(Au ∩B)\Ŝu−1A,1B.

By Lemma 1, r̄(S) =
∑

u∈s(A\Γ/B) r̄
(

(Au ∩ B)\Ŝu−1A,1B

)

=
∑

u∈s(A\Γ/B) r̄(A
u ∩ B). �

The same argument proves the following more general result which does not require X̂ to be
a forest or locally-finite, or the Γ-action on X̂ to be free.

Theorem 6. Suppose Γ is any group, X̂ is a free-edge ordered Γ-graph, A and B are subgraphs
of X̂, A and B are subgroups of Γ that stabilize A and B, respectively, and the actions of A
on A and of B on B are cocompact. Then

∑

u∈s(A\Γ/B)

#((Au ∩B)\E(u−1A)∩B) ≤ #(A\EA) ·#(B\EB).

(Here A, B and (u−1A) ∩ B are viewed as an ordered A-graph, an ordered B-graph and an

ordered Au ∩ B-graph, respectively, with the partial orders restricted from EX̂ .)
If, in addition, A and B are forests and the actions of A on A and of B on B are free, then

∑

u∈s(A\Γ/B)

r̄((Au ∩B)\((u−1A) ∩ B)) ≤ r̄(A\A) · r̄(B\B) and

∑

u∈s(A\Γ/B)

r̄(Au ∩B) ≤ r̄(A) · r̄(B).

Further, it is possible to remove the assumption of cocompactness if one allows infinite values.
In this case the above inequalities still hold with the convention 0 · ∞ = 0.
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1.7. Ladders. The ladder of length m, denoted Lm, is the graph consisting of two circles, each
subdivided into m edges, and connected consecutively by m edges, as on the picture.

It is easily checked that r̄(Lm) = m. For each m there is a covering map Lm → L1 wrapping
the two circles in Lm m times around the two circles in L1. If m and n are relatively prime,
Lmn is the fiber product of Lm and Ln over L1, as on the picture.

L1Lm

Ln

Lmn

This is a special case of Stallings diagrams [7], and it can be extended to a system as in [1,
section 3.1]. We have r̄(Lmn) = r̄(Lm) · r̄(Ln), i.e. the upper bound in SHNC is sharp.
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