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Abstract. We prove the Baum-Connes conjecture for hyperbolic groups
and their subgroups.

1. Introduction

The Baum-Connes conjecture states that, for a discrete group G, the K-
homology groups of the classifying space for proper G-action is isomor-
phic to the K-groups of the reduced group C∗-algebra of G [3,2]. A positive
answer to the Baum-Connes conjecture would provide a complete solution
to the problem of computing higher indices of elliptic operators on com-
pact manifolds. The rational injectivity part of the Baum-Connes conjecture
implies the Novikov conjecture on homotopy invariance of higher signa-
tures. The Baum-Connes conjecture also implies the Kadison-Kaplansky
conjecture that for G torsion free there exists no non-trivial projection in
the reduced group C∗-algebra associated to G. In [7], Higson and Kasparov
prove the Baum-Connes conjecture for groups acting properly and isomet-
rically on a Hilbert space. In a recent remarkable work, Vincent Lafforgue
proves the Baum-Connes conjecture for strongly bolic groups with prop-
erty RD [15,12,13]. In particular, this implies the Baum-Connes conjecture
for the fundamental groups of strictly negatively curved compact mani-
folds. In [4], Connes and Moscovici prove the rational injectivity part of the
Baum-Connes conjecture for hyperbolic groups using cyclic cohomology
method. In [11], Kasparov and Skandalis prove the rational injectivity of
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the Baum-Connes conjecture for bolic groups using KK-theory. In this pa-
per, we exploit Lafforgue’s work to prove the Baum-Connes conjecture for
hyperbolic groups and their subgroups.

The main step in the proof is the following theorem.

Theorem 17. Every hyperbolic group G admits a metric d̂ with the follow-
ing properties.

(1) d̂ is G-invariant, i.e. d̂(g · x, g · y) = d̂(x, y) for all x, y, g ∈ G.
(2) d̂ is quasiisometric to the word metric.
(3) The metric space (G, d̂) is weakly geodesic and strongly bolic.

This paper is organized as follows. In Sect. 2, we recall the concepts of
hyperbolic groups and bicombings. In Sect. 3, we introduce a distance-like
function r on a hyperbolic group and study its basic properties. In Sect. 4,
we prove that r satisfies certain distance-like inequalities. In Sect. 5, we
construct a metric d̂ on a hyperbolic group and prove Theorem 17 stated
above. In Sect. 6, we combine Lafforgue’s work and Theorem 17 to prove
the Baum-Connes conjecture for hyperbolic groups and their subgroups.

After this work was done, we learned from Vincent Lafforgue that he has
independently proved the Baum-Connes conjecture for hyperbolic groups
by a different and elegant method [14], and we also learned from Michael
Puschnigg that he has independently proved the Kadison-Kaplansky con-
jecture for hyperbolic groups using a beautiful local cyclic homology
method [17]. It is our pleasure to thank both of them for bringing their
work to our attention.

We also would like to thank the referee for helpful suggestions.

2. Hyperbolic groups and bicombings

In this section, we recall the concepts of hyperbolic groups and bicombings.

2.1. Hyperbolic groups. Let G be a finitely generated group. Let S be
a finite generating set for G. Recall that the Cayley graph of G with respect
to S is the graph Γ satisfying the following conditions:

(1) the set of vertices in Γ, denoted by Γ(0), is G;
(2) the set of edges is G × S, where each edge (g, s) ∈ G × S spans the

vertices g and gs.

We endow Γ with the path metric d induced by assigning length 1 to
each edge. Notice that G acts freely, isometrically and cocompactly on Γ.
A geodesic path in Γ is a shortest edge path. The restriction of the path
metric d to G is called the word metric.

A finitely generated group G is called hyperbolic if there exists a constant
δ ≥ 0 such that all the geodesic triangles in Γ are δ-fine in the following
sense: if a, b, and c are vertices in Γ, [a, b], [b, c], and [c, a] are geodesics
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from a to b, from b to c, and from c to a, respectively, and points ā ∈ [b, c],
v, c̄ ∈ [a, b], w, b̄ ∈ [a, c] satisfy

d(b, c̄) = d(b, ā), d(c, ā) = d(c, b̄),

d(a, v) = d(a, w) ≤ d(a, c̄) = d(a, b̄),

then d(v,w) ≤ δ.
The above definition of hyperbolicity does not depend on the choice of

the finite generating set S. See [6,1] for other equivalent definitions.
For vertices a, b, and c in Γ, the Gromov product is defined by

(b|c)a := d(a, b̄) = d(a, c̄) = 1

2

[
d(a, b) + d(a, c) − d(b, c)

]
.

The Gromov product can be used to measure the degree of cancellation in
the multiplication of group elements in G.

2.2. Bicombings. Let G be a finitely generated group. Let Γ be a Cayley
graph with respect to a finite generating set. A bicombing p in Γ is a function
assigning to each ordered pair (a, b) of vertices in Γ an oriented edge-path
p[a, b] from a to b. A bicombing p is called geodesic if each path p[a, b]
is geodesic, i.e. a shortest edge path. A bicombing p is G-equivariant if
p[g · a, g · b] = g · p[a, b] for each a, b ∈ Γ(0) and each g ∈ G.

3. Definition and properties of r(a, b)

The purpose of this section is to introduce a distance-like function r on
a hyperbolic group and study its basic properties.

Let G be a hyperbolic group and Γ be a Cayley graph of G with respect
to a finite generating set. We endow Γ with the path metric d, and identify
G with Γ(0), the set of vertices of Γ. Let δ ≥ 1 be a positive integer such
that all the geodesic triangles in Γ are δ-fine.

The ball B(x, R) is the set of all vertices at distance at most R from the
vertex x. The sphere S(x, R) is the set of all vertices at distance R from the
vertex x. Pick an equivariant geodesic bicombing p in Γ. By p[a, b](t) we
denote the point on the geodesic path p[a, b] at distance t from a. Recall that
C0(G,Q) is the space of all 0-chains (in G = Γ(0)) with coefficients in Q.
Endow C0(G,Q) with the 	1-norm | · |1. We identify G with the standard
basis of C0(G,Q). Therefore the left action of G on itself induces a left
action on C0(G,Q).

First we recall several constructions from [16].
For v,w ∈ G, the flower at w with respect to v is defined to be

Fl(v,w) := S(v, d(v,w)) ∩ B(w, δ) ⊆ G.
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For each a ∈ G, we define pra : G → G by:

(1) pra(a) := a;
(2) if b �= a, pra(b) := p[a, b](t), where t is the largest integral multiple

of 10δ which is strictly less than d(a, b).

Now for each pair a, b ∈ G, we define a 0-chain f(a, b) in G inductively
on the distance d(a, b) as follows:

(1) if d(a, b) ≤ 10δ, f(a, b) := b;
(2) if d(a, b) > 10δ and d(a, b) is not an integral multiple of 10δ, let

f(a, b) := f(a, pra(b));
(3) if d(a, b) > 10δ and d(a, b) is an integral multiple of 10δ, let

f(a, b) := 1

#Fl(a, b)

∑
x∈Fl(a,b)

f(a, pra(x)).

Proposition 1 ([16]). The function f : G × G → C0(G,Q) defined above
satisfies the following conditions.

(1) For each a, b ∈ G, f(b, a) is a convex combination, i.e. its coefficients
are non-negative and sum up to 1.

(2) If d(a, b) ≥ 10δ, then supp f(b, a) ⊆ B(p[b, a](10δ), δ) ∩ S(b, 10δ).
(3) If d(a, b) ≤ 10δ, then f(b, a) = a.
(4) f is G-equivariant, i.e. f(g · b, g · a) = g · f(b, a) for any g, a, b ∈ G.
(5) There exist constants L ≥ 0 and 0 ≤ λ < 1 such that, for all

a, a′, b ∈ G, ∣∣∣ f(b, a) − f(b, a′)
∣∣∣
1

≤ L λ(a|a′)b.

�a � b
p[b, a]

10δ

f(b, a)

�

Fig. 3.1 Convex combination f(b, a)

Let ω7 be the number of elements in a ball of radius 7δ in G. For each
a ∈ G, a 0-chain star(a) is defined by

star(a) := 1

ω7

∑
x∈B(a,7δ)

x.

This extends to a linear operator star : C0(G,Q) → C0(G,Q). Define the
0-chain f̄ (b, a) by f̄ (b, a) := star

(
f(b, a)

)
.

The main reason for introducing f̄ is that f̄ has better cancellation
properties than f (compare Proposition 1(5) with Proposition 2(5) and 2(6)
below). These cancellation properties play key roles in this paper.
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Proposition 2 ([16]). The function f̄ : G × G → C0(G,Q) defined above
satisfies the following conditions.

(1) For each a, b ∈ G, f̄ (b, a) is a convex combination.
(2) If d(a, b) ≥ 10δ, then supp f̄ (b, a) ⊆ B(p[b, a](10δ), 8δ).
(3) If d(a, b) ≤ 10δ, then supp f̄ (b, a) ⊆ B(a, 7δ).

(4) f̄ is G-equivariant, i.e. f̄ (g · b, g · a) = g · f̄ (b, a) for any g, a, b ∈ G.
(5) There exist constants L ≥ 0 and 0 ≤ λ < 1 such that, for all

a, a′, b ∈ G, ∣∣∣ f̄ (b, a) − f̄ (b, a′)
∣∣∣
1

≤ L λ(a|a′)b .

(6) There exists a constant 0 ≤ λ′ < 1 such that if a, b, b′ ∈ G satisfy

(a|b)b′ ≤ 10δ and (a|b′)b ≤ 10δ, then
∣∣∣ f̄ (b, a) − f̄ (b′, a)

∣∣∣
1

≤ 2λ′.
(7) Let a, b, c ∈ G, γ be a geodesic path from a to b, and let

c ∈ NG (γ, 9δ) := {x ∈ G
∣∣ d(x, γ) ≤ 9δ}.

Then supp( f̄ (c, a)) ⊆ NG (γ, 9δ).

Definition 3. For each pair of vertices a, b ∈ G, a rational number
r(a, b) ≥ 0 is defined inductively on d(a, b) as follows.

• r(a, a) := 0.
• If 0 < d(a, b) ≤ 10δ, let r(a, b) := 1.
• If d(a, b) > 10δ, let r(a, b) := r

(
a, f̄ (b, a)

) + 1, where r
(
a, f̄ (b, a)

)
is

defined by linearity in the second variable.

The function r is well defined by Proposition 2(2). Also, r(a, b) is well
defined when b is a 0-chain, by linearity.

Let Q≥0 denote the set of all non-negative rational numbers.

Proposition 4. For the function r : G × G → Q≥0 defined above, there
exists N ≥ 0 such that, for all a, b, b′ ∈ G,∣∣r(a, b) − r(a, b′)

∣∣ ≤ d(b, b′) + N.

Proof. Up to the G-action, there are only finitely many triples of vertices
a, b, b′, satisfying d(a, b) + d(a, b′) ≤ 40δ, hence there exists a uniform
bound N ′ for the norms ∣∣r(a, b) − r(a, b′)

∣∣
for such vertices a, b, b′. Let λ′ be the constant from Proposition 2(6) and
pick N large enough so that

N ′ ≤ N and λ′ · [27δ + N] ≤ N.(3.1)

We shall prove the inequality in Proposition 4 by induction on d(a, b) +
d(a, b′).
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If d(a, b) + d(a, b′) ≤ 40δ, then
∣∣r(a, b) − r(a, b′)

∣∣ ≤ N ′ ≤ N ≤ d(b, b′) + N

just by the choices of N ′ and N. We assume now that d(a, b)+d(a, b′) > 40δ.
Consider the following two cases.

Case 1. (a|b′)b > 10δ or (a|b)b′ > 10δ.

�a

� b

� b′

p[b, a]

γ

�

�

�

10δ

� v′

� v

�x

Fig. 3.2 Proposition 4, Case 1

Assume, for example, that (a|b′)b > 10δ. Then d(a, b) > 10δ, hence,
by definition,

r(a, b) = r
(
a, f̄ (b, a)

) + 1.

By Proposition 2(2), we have supp f̄ (b, a) ⊆ B(v, 8δ), where v :=
p[b, a](10δ). Also, (a|b′)b > 10δ implies d(b, b′) > 10δ. Hence there
exists a geodesic γ between b and b′, and a vertex v′ on γ with d(b, v′) =
d(b, v) = 10δ. Since geodesic triangles are δ-fine, d(v, v′) ≤ δ. For every
x ∈ supp f̄ (b, a),

d(x, b′) ≤ d(x, v) + d(v, v′) + d(v′, b′)
≤ 8δ + δ + [

d(b, b′) − 10δ
]

≤ d(b, b′) − 1,

d(a, x) ≤ d(a, v) + d(v, x)
≤ [

d(a, b) − 10δ
] + 8δ

≤ d(a, b) − 1.

Therefore
d(a, x) + d(a, b′) < d(a, b) + d(a, b′).

Hence the induction hypotheses apply to the vertices a, x, and b′, giving
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∣∣r(a, x) − r(a, b′)
∣∣ ≤ d(x, b′) + N ≤ d(b, b′) − 1 + N.(3.2)

By Proposition 2(1–2),

f̄ (b, a) =
∑

x∈B(v,8δ)

αx x

for some non-negative coefficients αx summing up to 1. By the definition
of r and inequality (3.2), we have∣∣r(a, b) − r(a, b′)

∣∣
=

∣∣∣r(a, f̄ (b, a)
) + 1 − r(a, b′)

∣∣∣

=
∣∣∣∣∣∣

∑
x∈B(v,8δ)

αxr(a, x) + 1 − r(a, b′)

∣∣∣∣∣∣

≤
∣∣∣∣∣∣

∑
x∈B(v,8δ)

αx
[
r(a, x) − r(a, b′)

]
∣∣∣∣∣∣ + 1

≤
∑

x∈B(v,8δ)

αx

∣∣∣r(a, x) − r(a, b′)
∣∣∣ + 1

≤
∑

x∈B(v,8δ)

αx
(
d(b, b′) − 1 + N

) + 1

= d(b, b′) + N.

Case 2. (a|b′)b ≤ 10δ and (a|b)b′ ≤ 10δ.

�a

� b

�

b′

p[b, a]

p[b′, a]

�̄
b′

�

�

b̄

≤10δ

≤10δ

�

w

�

v′

�

v

�x

�

x′

≤δ

Fig. 3.3 Proposition 4, Case 2

Since d(a, b) + d(a, b′) > 40δ and d(b, b′) = (a|b′)b + (a|b)b′ ≤ 20δ,
we have d(a, b) > 10δ and d(a, b′) > 10δ. Then, by the definition of r,
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∣∣r(a, b) − r(a, b′)
∣∣(3.3)

=
∣∣∣r(a, f̄ (b, a)

) + 1 − r
(
a, f̄ (b′, a)

) − 1
∣∣∣

=
∣∣∣r(a, f̄ (b, a) − f̄ (b′, a)

)∣∣∣.
The 0-chain f̄ (b, a) − f̄ (b′, a) can be represented in the form f+ − f−,
where f+ and f− are 0-chains with non-negative coefficients and disjoint
supports. By Proposition 2(6),

| f+|1 + | f−|1 = | f+ − f−|1
= ∣∣ f̄ (b, a) − f̄ (b′, a)

∣∣
1

≤ 2λ′.

Since the coefficients of the 0-chain f+ − f− = f̄ (b, a) − f̄ (b′, a) sum up
to 0, then

| f+|1 = | f−|1 ≤ λ′.(3.4)

With the notations v := p[b, a](10δ), v′ := p[b′, a](10δ), we have

supp f+ ⊆ supp f̄ (b, a) ⊆ B(v, 8δ) and

supp f− ⊆ supp f̄ (b′, a) ⊆ B(v′, 8δ)

(see Fig. 3.3). Since geodesic triangles are δ-fine, there exists a point w on
p[b, a] such that d(a, w) = d(a, v′) and d(w, v′) ≤ δ. We first assume that
d(a, w) ≤ d(a, v). We have

d(v, v′) ≤ d(v,w) + d(w, v′)
≤ d(w, b′) + δ

= d(v′, b) + δ

≤ 11δ,

where b′ and b are the inscribed points as in the definition of δ-fine triangle
in Sect. 2.1. If d(a, w) > d(a, v), we can apply the same argument to prove
d(v, v′) ≤ 11δ by interchanging v′ with v.

Hence by Proposition 2(2), for each x ∈ supp f+ and x ′ ∈ supp f−,

d(x, x ′) ≤ d(x, v) + d(v, v′) + d(v′, x ′)
≤ 8δ + 11δ + 8δ

= 27δ.

Also d(a, x)+d(a, x ′) < d(a, b)+d(a, b′), so the induction hypotheses
for the vertices a, x, and x ′ apply, giving∣∣r(a, x) − r(a, x ′)

∣∣ ≤ d(x, x ′) + N(3.5)

≤ 27δ + N
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for each x ∈ supp f+ and x ′ ∈ supp f−. Then we continue equality (3.3)
using (3.4), (3.5), linearity of r in the second variable, and the definition of
N in (3.1): ∣∣r(a, b) − r(a, b′)

∣∣ =
∣∣∣r(a, f̄ (b, a) − f̄ (b′, a)

)∣∣∣
=

∣∣∣r(a, f+) − r(a, f−)

∣∣∣
≤ λ′ · [

27δ + N
]

≤ N ≤ d(b, b′) + N.

Proposition 4 is proved. ��
Let ε : C0(G,Q) → Q be the augmentation map taking each 0-chain to

the sum of its coefficients. A 0-chain z with ε(z) = 0 is called a 0-cycle.

Proposition 5. There exists a constant D ≥ 0 such that, for each a ∈ G
and each 0-cycle z, ∣∣r(a, z)

∣∣ ≤ D |z|1 diam
(

supp(z)
)
.

Proof. It suffices to consider the case z = b−b′, where b and b′ are vertices
with d(b, b′) = 1. But this case is immediate from Proposition 4 by taking
D := 1

2 (1 + N). ��
Theorem 6. For a hyperbolic group G, the function r : G × G → Q≥0
from Definition 3 satisfies the following properties.

(1) r is G-equivariant, i.e. r(a, b) = r(g · a, g · b) for g, a, b ∈ G.
(2) r is Lipschitz equivalent to the word metric. More precisely, we have

1

20δ
d(a, b) ≤ r(a, b) ≤ d(a, b)

for all a, b ∈ G.
(3) There exist constants C ≥ 0 and 0 ≤ µ < 1 such that, for all

a, a′, b, b′ ∈ G with d(a, a′) ≤ 1 and d(b, b′) ≤ 1,∣∣r(a, b) − r(a′, b) − r(a, b′) + r(a′, b′)
∣∣ ≤ Cµd(a,b).

In particular, if d(a, a′) ≤ 1 and d(b, b′) ≤ 1, then∣∣r(a, b) − r(a′, b) − r(a, b′) + r(a′, b′)
∣∣ → 0 as d(a, b) → ∞.

Proof. (1) The G-equivariance of r follows from the definition of r and
Proposition 2(4).
(2) Using the assumption that δ ≥ 1 and the definition of r, the inequalities

1

20δ
d(a, b) ≤ r(a, b) ≤ d(a, b)

can be shown by an easy induction on d(a, b). The remaining part (3)
immediately follows from the following proposition. ��
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Proposition 7. There exist constants A > 0, B > 0, and 0 < ρ < 1 such
that, for all a, a′, b, b′ ∈ G with d(a, a′) ≤ 1 and d(b, b′) ≤ 30δ,
∣∣r(a, b) − r(a′, b) − r(a, b′) + r(a′, b′)

∣∣ ≤ (
A d(b, b′) + B

)
ρd(a,b)+d(a,b′).

Proof. Let D ≥ 0 be the constant from Proposition 5, L ≥ 0 and 0 ≤ λ < 1
be the constants from Propositions 1(5) and 2(5), δ ≥ 1 be an integral
hyperbolicity (fine-triangles) constant, and ω7 be the number of vertices in
a ball of radius 7δ in G.

Now we define constants A, B and ρ. Since the inequality obviously
holds when b = b′, we will assume that d(b, b′) ≥ 1. Then constant A > 0
can be chosen large enough so that

– the desired inequality is satisfied whenever d(a, b) + d(a, b′) ≤ 100δ,
ρ ≥ √

λ, and B > 0, and
– 32DδL

(√
λ
)−32δ

< A.

So from now on we can assume that d(a, b) + d(a, b′) > 100δ. Also the
choice of A implies that inequalities

1 − A

Al + B
+ 32DδL

(√
λ
)t−32δ

(Al + B)ρt−18δ
≤ 1 − A

Al + B
+ 32DδL

(√
λ
)−32δ

Al + B
< 1

hold for all B > 0,
√

λ ≤ ρ < 1, 1 ≤ l ≤ 30δ, and t ≥ 0. Therefore, we
can pick B > 0 sufficiently large and ρ < 1 sufficiently close to 1 so that
the inequalities

1 − A

Al + B
+ 32DδL

(√
λ
)t−32δ

(Al + B)ρt−18δ
≤ ρ18δ and

(
1 − 1

ω7

)
30δA + B

B
+ 64DδL

(√
λ
)t−32δ

Bρt−36δ
≤ ρ36δ

are satisfied for all 1 ≤ l ≤ 30δ and all t ≥ 0. The above inequalities rewrite
as

(3.6)(
A(l − 1) + B

)
ρt−18δ + 32DδL

(√
λ
)t−32δ ≤ (

Al + B
)
ρt and

(3.7)(
1 − 1

ω7

)
(30δA + B) ρt−36δ + 64DδL

(√
λ
)t−32δ ≤ B ρt

and they are satisfied for all 1 ≤ l ≤ 30δ and all t ≥ 0.
The proof of the proposition proceeds by induction on d(a, b)+d(a, b′).

We consider the following two cases.
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Case 1. (a|b)b′ > 10δ or (a|b′)b > 10δ.

�
a
�

a′

� b

� b′

p[b, a]
p[b, a′]
�

�

10δ
�

�

�x

Fig. 3.4 Proposition 7, Case 1

Without loss of generality, (a|b′)b > 10δ (interchange b and b′ other-
wise). The 0-cycle f(b, a)− f(b, a′) can be uniquely represented as f+− f−,
where f+ and f− are 0-chains with non-negative coefficients, disjoint sup-
ports, and of the same 	1-norm. We have

f(b, a) = f0 + f+ and f(b, a′) = f0 + f−

for some 0-chain f0 with non-negative coefficients (actually f0 =
min

{
f(b, a), f(b, a′)

}
). Denote α := | f+|1 = | f−|1 = ε( f+) = ε( f−),

where ε is the augmentation map. Since d(a, a′) ≤ 1, then

(a|a′)b ≥ 1

2

[
d(a, b) + d(a′, b) − 1

]

≥ 1

2

[
d(a, b) + d(a, b′) − 32δ

]
,

and by Proposition 1(5),

α = 1

2

∣∣∣ f(b, a) − f(b, a′)
∣∣∣
1

(3.8)

≤ 1

2
Lλ(a|a′)b

≤ 1

2
L
(√

λ
)d(a,b)+d(a,b′)−32δ

.

By the definition of hyperbolicity in Sect. 2.1 and the assumptions d(a, b)+
d(a, b′) > 100δ and d(b, b′) ≤ 30δ, we have

d
(

p[b, a](10δ), p[b, a′ ](10δ)
) ≤ δ.
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Hence there exists a vertex x0 ∈ B
(
p[b, a](10δ), 8δ

)∩B
(
p[b, a′](10δ), 8δ

)
.

By the definitions of r and f̄ ,∣∣r(a, b) − r(a′, b) − r(a, b′) + r(a′, b′)
∣∣

=
∣∣∣r(a, f̄ (b, a)

) + 1 − r
(
a′, f̄ (b, a′)

) − 1 − r(a, b′) + r(a′, b′)
∣∣∣

=
∣∣∣r(a, star( f0 + f+)

) − r
(
a′, star( f0 + f−)

) − r(a, b′) + r(a′, b′)
∣∣∣

≤
∣∣∣r(a, star( f0) + αx0

) − r
(
a′, star( f0) + αx0

) − r(a, b′) + r(a′, b′)
∣∣∣ +

+
∣∣∣r(a, star( f+) − αx0

)∣∣∣ +
∣∣∣r(a′, αx0 − star( f−)

)∣∣∣.
Now we bound each of the three terms in the last sum. We number these
terms consecutively as T1, T2, T3.
Term T1. Using the same argument as in Case 1 in the proof of Proposition 4,
one checks that, for each

x ∈ supp
(
star( f0) + αx0

) ⊆ B(p[b, a](10δ), 8δ) ∩ B(p[b, a′](10δ), 8δ),

the following conditions hold:

d(x, b′) ≤ d(b, b′) − 1 ≤ 30δ and
d(a, b) + d(a, b′) − 18δ ≤ d(a, x) + d(a, b′) ≤ d(a, b) + d(a, b′) − 1.

In particular, the induction hypotheses are satisfied for the vertices a, a′ , x, b′,
giving ∣∣r(a, x) − r(a′, x) − r(a, b′) + r(a′, b′)

∣∣
≤ (

A d(x, b′) + B
)
ρd(a,x)+d(a,b′)

≤
(

A
(
d(b, b′) − 1

) + B
)

ρd(a,b)+d(a,b′)−18δ.

Since star( f0)+αx0 is a convex combination, by linearity of r in the second
variable,

T1 =
∣∣∣r(a, star( f0) + αx0

) − r
(
a′, star( f0) + αx0

) − r(a, b′) + r(a′, b′)
∣∣∣

≤
(

A
(
d(b, b′) − 1

) + B
)

ρd(a,b)+d(a,b′)−18δ.

Terms T2 and T3. Since star( f+) − αx0 is a 0-cycle supported in a ball of
radius 8δ, by Proposition 5 and inequality (3.8),

T2 =
∣∣∣r(a, star( f+) − αx0

)∣∣∣
≤D

∣∣∣star( f+) − αx0

∣∣∣
1
· 16δ

≤D · 2α · 16δ

≤16DδL
(√

λ
)d(a,b)+d(a,b′)−32δ

.
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Analogously,

T3 =
∣∣∣r(a′, αx0 − star( f−)

)∣∣∣ ≤ 16DδL
(√

λ
)d(a,b)+d(a,b′)−32δ

.

Combining the three bounds above and using the definition of B and ρ
(inequality (3.6)),∣∣r(a, b) − r(a′, b) − r(a, b′) + r(a′, b′)

∣∣
≤ T1 + T2 + T3

≤
(
A
(
d(b, b′)−1

) + B
)
ρd(a,b)+d(a,b′)−18δ + 32DδL

(√
λ
)d(a,b)+d(a,b′)−32δ

≤ (
A d(b, b′) + B

)
ρd(a,b)+d(a,b′).

This finishes Case 1.

Case 2. (a|b)b′ ≤ 10δ and (a|b′)b ≤ 10δ.

�a
�a′

� b

�

b′

�

�

10δ≥

≤10δ

�

�
v
�

�v′
�

�x

�

x′

≤δ

Fig. 3.5 Proposition 7, Case 2

As in Case 1, we have

f(b, a) − f(b, a′) = f+ − f−,

f(b, a) = f0 + f+, f(b, a′) = f0 + f−,

α := | f+|1 = | f−|1 = ε( f+) = ε( f−),

α ≤ 1

2
Lλ(a|a′)b ≤ 1

2
L
(√

λ
)d(a,b)+d(a,b′)−32δ

,

where f+, f−, and f0 are 0-chains with non-negative coefficients, and f+
and f− have disjoint supports. Analogously, interchanging b and b′,

f(b′, a) − f(b′, a′) = f ′+ − f ′−,

f(b′, a) = f ′
0 + f ′+, f(b′, a′) = f ′

0 + f ′−,

α′ := | f ′+|1 = | f ′−|1 = ε( f ′+) = ε( f ′−),

α′ ≤ 1

2
Lλ(a|a′)b′ ≤ 1

2
L
(√

λ
)d(a,b)+d(a,b′)−32δ

,
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where f ′+, f ′−, and f ′
0 are 0-chains with non-negative coefficients, and f ′+

and f ′− have disjoint supports.
Denote v := p[b, a](10δ) and v′ := p[b′, a](10δ). By the conditions of

Case 2 and δ-hyperbolicity of Γ, using the same argument as in Case 2 in the
proof of Proposition 4, we obtain d(v, v′) ≤ 11δ. Let x0 be a vertex closest
to the mid-point of a geodesic path connecting v to v′. Proposition 1(2)
implies that

supp f0 ∪ supp f ′
0 ⊆ B(x0, 7δ) and

supp f− ∪ supp f+ ∪ supp f ′
− ∪ supp f ′

+ ⊆ B(x0, 8δ).

By the definition of r,∣∣r(a, b) − r(a′, b) − r(a, b′) + r(a′, b′)
∣∣

=
∣∣∣r(a, f̄ (b, a)

) − r
(
a′, f̄ (b, a′)

) − r
(
a, f̄ (b′, a)

) + r
(
a′, f̄ (b′, a′)

)∣∣∣
≤

∣∣∣r(a, star( f0 + f+)
) − r

(
a′, star( f0 + f−)

) −
− r

(
a, star( f ′

0 + f ′
+)

) + r
(
a′, star( f ′

0 + f ′
−)

)∣∣∣
≤

∣∣∣r(a, star( f0) + αx0 − star( f ′
0) − α′x0

) −
− r

(
a′, star( f0) + αx0 − star( f ′

0) − α′x0
)∣∣∣ +

+
∣∣∣r(a, star( f+)

) − r
(
a, αx0

)∣∣∣ +
∣∣∣r(a′, αx0

) − r
(
a′, star( f−)

)∣∣∣ +
+

∣∣∣r(a, α′x0
) − r

(
a, star( f ′

+)
)∣∣∣ +

∣∣∣r(a′, star( f ′
−)

) − r
(
a′, α′x0

)∣∣∣.
Now we bound each of the five terms in the last sum. We number these
terms consecutively as S1, ..., S5.
Term S1. One checks that, for each

x ∈ supp
(
star( f0) + αx0

) ⊆ B(v, 8δ) ∩ B(p[b, a′](10δ), 8δ) and

x ′ ∈ supp
(
star( f ′

0) + α′x0
) ⊆ B(v′, 8δ) ∩ B(p[b′, a′](10δ), 8δ),

the following conditions hold:

d(x, x ′) ≤ 30δ and
d(a, b) + d(a, b′) − 36δ ≤ d(a, x) + d(a, x ′) ≤ d(a, b) + d(a, b′) − 1.

In particular, the induction hypotheses are satisfied for the vertices a, a′ , x, x ′,
giving ∣∣r(a, x) − r(a′, x) − r(a, x ′) + r(a′, x ′)

∣∣(3.9)

≤ (Ad(x, x ′) + B) ρd(a,x)+d(a,x′)

≤ (30δA + B) ρd(a,b)+d(a,b′)−36δ.
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Recall that ω7 is the number of vertices in a ball of radius 7δ. Let
β be the (positive) coefficient of x0 in the 0-chain star( f0), and β′ be
the (positive) coefficient of x0 in the 0-chain star( f ′

0). Without loss of
generality, we can assume

∣∣star( f0)
∣∣
1 ≤ ∣∣star( f ′

0)
∣∣
1. Since x0 was chosen

so that supp f0 ∪ supp f ′
0 ⊆ B(x0, 7δ), by the definition of star, we have

β = 1

ω7

∣∣ f0

∣∣
1 = 1

ω7

∣∣star( f0)
∣∣
1 ≤ 1

ω7

∣∣star( f ′
0)

∣∣
1 = 1

ω7

∣∣ f ′
0

∣∣
1 = β′ and

α − α′ =
(

1 − ∣∣ f0

∣∣
1

)
−

(
1 − ∣∣ f ′

0

∣∣
1

)
= ∣∣ f ′

0

∣∣
1 − ∣∣ f0

∣∣
1 = ω7(β

′ − β) ≥ 0.

Therefore,∣∣∣star( f0) + αx0 − star( f ′
0) − α′x0

∣∣∣
1

≤
∣∣∣star( f0) − βx0

∣∣∣
1
+

∣∣∣β′x0 − star( f ′
0)

∣∣∣
1
+

∣∣∣[(α − α′) − (β′ − β)
]
x0

∣∣∣
1

=
(∣∣star( f0)

∣∣
1 − β

)
+

(∣∣star( f ′
0)

∣∣
1 − β′

)
+ (

β′ − β
)(

ω7 − 1
)

=
(∣∣ f0

∣∣
1 − β

)
+

(∣∣ f ′
0

∣∣
1 − β′

)
+

(∣∣ f ′
0

∣∣
1 − ∣∣ f0

∣∣
1

) (
1 − 1

ω7

)

= ∣∣ f0

∣∣
1

(
1 − 1

ω7

)
+ ∣∣ f ′

0

∣∣
1

(
1 − 1

ω7

)
+

(∣∣ f ′
0

∣∣
1 − ∣∣ f0

∣∣
1

) (
1 − 1

ω7

)

= 2
∣∣ f ′

0

∣∣
1

(
1 − 1

ω7

)

≤ 2
(

1 − 1

ω7

)
.

Since
[
star( f0) + αx0

] − [
star( f ′

0) + α′x0
]

is a 0-cycle, it is of the form
h+ − h−, where h+ and h− are 0-chains with non-negative coefficients,
disjoint supports and of the same 	1-norm, so we can define

γ := |h+|1 = |h−|1 = ε(h+) = ε(h−).

By the above inequality,

γ = 1

2
|h+ − h−|1 ≤ 1 − 1

ω7
,

then, by (3.9) and linearity of r in the second variable,

S1 =
∣∣∣r(a, h+ − h−) − r(a′, h+ − h−)

∣∣∣
=

∣∣∣r(a, h+) − r(a′, h+) − r(a, h−) + r(a′, h−)

∣∣∣
≤ γ ·

(
30δA + B

)
ρd(a,b)+d(a,b′)−36δ

≤
(

1 − 1

ω7

) (
30δA + B

)
ρd(a,b)+d(a,b′)−36δ.
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Terms S2 − S5. Analogously to term T2 in Case 1,

S2 ≤ 16DδL(
√

λ)d(a,b)+d(a,b′)−32δ,

S3 ≤ 16DδL(
√

λ)d(a,b)+d(a,b′)−32δ,

S4 ≤ 16DδL(
√

λ)d(a,b)+d(a,b′)−32δ,

S5 ≤ 16DδL(
√

λ)d(a,b)+d(a,b′)−32δ.

Combining the bounds for the five terms above and using the definition of
B and ρ (inequality (3.7)),∣∣r(a, b) − r(a′, b) − r(a, b′) + r(a′, b′)

∣∣
≤ S1 + S2 + S3 + S4 + S5

≤
(

1 − 1

ω7

)
(30δA + B) ρd(a,b)+d(a,b′)−36δ + 64DδL(

√
λ)d(a,b)+d(a,b′)−32δ

≤ B ρd(a,b)+d(a,b′)

≤ (
A d(b, b′) + B

)
ρd(a,b)+d(a,b′).

Proposition 7 and Theorem 6 are proved. ��

4. More properties of r

In this section, we prove two distance-like inequalities for the function r
introduced in the previous section.

As before, let G be a hyperbolic group and Γ be the Cayley graph of G
with respect to a finite generating set. For any subset A ⊆ Γ, denote

NG(A, R) := {x ∈ G
∣∣ d(x, A) ≤ R}.

Proposition 8. There exists C1 ≥ 0 with the following property. If a, b ∈ G,
γ is a geodesic in Γ connecting a and b, x ∈ G ∩ γ , γ ′ is the part of γ
between x and b, and c ∈ NG(γ ′, 9δ), then∣∣r(a, c) − r(a, x) − r(x, c)

∣∣ ≤ C1 (Fig. 4.1).

Proof. Let

C1 := (80δ + N + 36δDL)

∞∑
k=0

λk−18δ,

where L ≥ 1 and 0 < λ < 1 are as in Propositions 1(5) and 2(5), N is as in
Proposition 4, and D is as in Proposition 5. It suffices to show the inequality

∣∣r(a, c) − r(a, x) − r(x, c)
∣∣ ≤ (80δ + N + 36δDL)

d(x,c)∑
k=0

λk−18δ.

We will prove it by induction on d(x, c).
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�a � b

� c

�

c′
�

x
γ

Fig. 4.1 Proposition 8

If d(x, c) ≤ 40δ, by Proposition 4 and Theorem 6(2) we have∣∣r(a, c) − r(a, x) − r(x, c)
∣∣ ≤ ∣∣r(a, c) − r(a, x)

∣∣ + r(x, c)

≤ (
d(c, x) + N

) + d(x, c) ≤ 80δ + N

≤ (80δ + N + 36δDL)

d(x,c)∑
k=0

λk−18δ.

Now we assume that d(x, c) > 40δ. There exists a vertex c′ ∈ γ ′ with
d(c′, c) ≤ 9δ, so

d(a, c) ≥ d(a, c′) − 9δ ≥ d(x, c′) − 9δ ≥ d(x, c) − 18δ > 10δ.

Hence by the definition of the function r, we have

r(a, c) = r
(
a, f̄ (c, a)

) + 1 and r(x, c) = r
(
x, f̄ (c, x)

) + 1.

Also

(a|x)c = 1

2

[
d(c, a) + d(c, x) − d(a, x)

]

≥ 1

2

[
d(c′, a) − 9δ + d(c′, x) − 9δ − d(a, x)

]
= d(x, c′) − 9δ

≥ d(x, c) − 18δ.

By Proposition 2(5),
∣∣∣ f̄ (c, x) − f̄ (c, a)

∣∣∣
1

≤ Lλ(a|x)c ≤ Lλd(x,c)−18δ.

This, together with Proposition 5 and Proposition 2(2), implies that
∣∣∣r(a, f̄ (c, a)

)− r
(
a, f̄ (c, x)

)∣∣∣ =
∣∣∣r(a, f̄ (c, a) − f̄ (c, x)

)∣∣∣
≤ DLλd(x,c)−18δ diam

(
supp( f̄ (c, a) − f̄ (c, x))

)
≤ 36δDLλd(x,c)−18δ.



114 I. Mineyev, G. Yu

By Proposition 2(2) and 2(7), for every y ∈ supp( f̄ (c, x)), we have

d(x, y) ≤ d(x, c) − 1 and y ∈ NG (γ ′, 9δ).

Hence by the induction hypotheses, we obtain∣∣r(a, c) − r(a, x) − r(x, c)
∣∣

=
∣∣∣(r(a, f̄ (c, a)

) + 1
) − r(a, x) − (

r(x, f̄ (c, x)) + 1
)∣∣∣

≤
∣∣∣r(a, f̄ (c, a)

) − r
(
a, f̄ (c, x)

)∣∣∣
+

∣∣∣r(a, f̄ (c, x)
) − r(a, x) − r

(
x, f̄ (c, x)

)∣∣∣
≤ 36δDLλd(x,c)−18δ + (80δ + N + 36δDL)

d(x,c)−1∑
k=0

λk−18δ

≤ (80δ + N + 36δDL)

d(x,c)∑
k=0

λk−18δ.

��
Proposition 9. There exists M′ ≥ 0 such that∣∣r(a, b) − r(a′, b)

∣∣ ≤ M′ d(a, a′)

for all a, a′, b ∈ G.

Proof. Recall that δ ≥ 1. Let

M′ := (20δ + 3 + 36δDL)

∞∑
k=0

λk−19δ.

The Cayley graph Γ is a geodesic metric space, hence it suffices to show
the inequality

∣∣r(a, b) − r(a′, b)
∣∣ ≤ (20δ + 3 + 36δDL)

d(b,a)∑
k=0

λk−19δ

when d(a, a′) = 1. We will prove it by induction on d(a, b).
If d(a, b) ≤ 10δ + 1, then by Theorem 6(2) we have∣∣r(a, b) − r(a′, b)

∣∣ ≤ r(a, b) + r(a′, b)

≤ d(a, b) + d(a′, b)

≤ 20δ + 3

≤ (20δ + 3 + 36δDL)

d(b,a)∑
k=0

λk−19δ.
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If d(a, b) > 10δ + 1, then d(a′, b) > 10δ.

For every y ∈ supp( f̄ (b, a)) ∪ supp( f̄ (b, a′)), by Proposition 2(2) we
have

(a|a′)y = 1

2

[
d(y, a) + d(y, a′) − d(a, a′)

] ≥ d(b, a) − 19δ.

Hence by the definition of the function r, the induction hypothesis and
Propositions 2(5) and 5, we obtain∣∣r(a, b) − r(a′, b)

∣∣
=

∣∣∣(r(a, f̄ (b, a)) + 1
) − (

r(a′, f̄ (b, a′)) + 1
)∣∣∣

≤ ∣∣r(a, f̄ (b, a)) − r(a′, f̄ (b, a))
∣∣ + ∣∣r(a′, f̄ (b, a)) − r(a′, f̄ (b, a′))

∣∣
≤ (20δ + 3 + 36δDL)

d(b,a)−1∑
k=0

λk−19δ

+DLλd(b,a)−19δdiam
(

supp
(

f̄ (b, a) − f̄ (b, a′)
))

≤ (20δ + 3 + 36δDL)

d(b,a)−1∑
k=0

λk−19δ + 36δDLλd(b,a)−19δ

≤ (20δ + 3 + 36δDL)

d(b,a)∑
k=0

λk−19δ.

��

5. Definition and properties of a new metric d̂

In this section, we use the function r defined in Sect. 3 to construct a G-
invariant metric d̂ on a hyperbolic group G such that d̂ is quasi-isometric
to the word metric and prove that (G, d̂) is weakly geodesic and strongly
bolic.

We define

s(a, b) := 1

2

[
r(a, b) + r(b, a)

]
for all a, b ∈ G.

Proposition 10. The above function s satisfies the following conditions.

(a) There exists M ≥ 0 such that∣∣s(u, v)−s(u, v′)
∣∣ ≤ M d(v, v′) and

∣∣s(u, v)−s(u′, v)
∣∣ ≤ M d(u, u′)

for all u, u′, v, v′ ∈ G.
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(b) There exists C1 ≥ 0 such that if a vertex w lies on a geodesic connecting
vertices u and v, then

∣∣s(u, v) − s(u, w) − s(w, v)
∣∣ ≤ C1.

Proof. (a) Since s is symmetric, it suffices to show only the first inequality.
Since the Cayley graph Γ is a geodesic metric space, it suffices to consider
only the case d(v, v′) = 1. This case follows from Propositions 4 and 9.

(b) follows from Proposition 8. ��
Proposition 11. There exists C2 ≥ 0 such that

s(a, b) ≤ s(a, c) + s(c, b) + C2

for all a, b, c ∈ G.

Proof. Let ā ∈ p[b, c], c̄ ∈ p[a, b], b̄ ∈ p[a, c] such that

d(b, c̄) = d(b, ā), d(c, ā) = d(c, b̄), d(a, c̄) = d(a, b̄).

By the definition of hyperbolicity, we have

d(ā, b̄) ≤ δ, d(ā, c̄) ≤ δ, d(b̄, c̄) ≤ δ.

By Proposition 10,

s(a, b) ≤ s(a, c̄) + s(c̄, b) + C1

≤ (
s(a, b̄) + M d(b̄, c̄)

) + (
s(ā, b) + M d(c̄, ā)

) + C1

≤ s(a, b̄) + s(ā, b) + 2δM + C1

≤ (
s(a, b̄) + s(b̄, c)

) + (
s(c, ā) + s(ā, b)

) + 2δM + C1

≤ s(a, c) + s(c, b) + 2δM + 3C1,

so we set C2 := 2δM + 3C1. ��
For every pair of elements a, b ∈ G, we define

d̂(a, b) :=
{

s(a, b) + C2 if a �= b,
0 if a = b.

Proposition 12. The function d̂ defined above is a metric on G.

Proof. By definition, d̂ is symmetric, and d̂(a, b) = 0 iff a = b. The triangle
inequality is a direct consequence of Proposition 11. ��
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Proposition 13. There exist constants C ≥ 0 and 0 ≤ µ < 1 with the
following property. For all R ≥ 0 and all a, a′, b, b′ ∈ G with d(a, a′) ≤ R
and d(b, b′) ≤ R,∣∣d̂(a, b) − d̂(a′, b) − d̂(a, b′) + d̂(a′, b′)

∣∣ ≤ R2Cµd(a,b)−2R.

In particular, if d(a, a′) ≤ R and d(b, b′) ≤ R, then

d̂(a, b) − d̂(a′, b) − d̂(a, b′) + d̂(a′, b′) → 0 as d(a, b) → ∞.

Proof. Take C and µ as in Theorem 6(3). Increasing C if needed we can
assume that a �= b, a �= b′, a′ �= b, a′ �= b′.

If a = a′ or b = b′, then

d̂(a, b) − d̂(a′, b) − d̂(a, b′) + d̂(a′, b′) = 0.

If d(a, a′) = 1 and d(b, b′) = 1, then by Theorem 6(3),∣∣d̂(a, b) − d̂(a′, b) − d̂(a, b′) + d̂(a′, b′)
∣∣

= ∣∣s(a, b) − s(a′, b) − s(a, b′) + s(a′, b′)
∣∣

≤ Cµd(a,b).

Without loss of generality, we can assume that R is an integer. In the
general case

d(a, a′) ≤ R and d(b, b′) ≤ R,

pick vertices a = a0, a1, ..., aR = a′ with d(ai−1, ai) ≤ 1 and b =
b0, b1, ..., bR = b′ with d(bj−1, bj) ≤ 1 and note that d(ai, bj) ≥ d(a, b)
−2R. Then we have∣∣d̂(a, b) − d̂(a′, b) − d̂(a, b′) + d̂(a′, b′)

∣∣
= ∣∣s(a, b) − s(a′, b) − s(a, b′) + s(a′, b′)

∣∣
=

∣∣∣
R∑

i=1

R∑
j=1

(
s(ai−1, bj−1) − s(ai, bj−1) − s(ai−1, bj) + s(ai , bj)

)∣∣∣

≤
R∑

i=1

R∑
j=1

∣∣s(ai−1, bj−1) − s(ai, bj−1) − s(ai−1, bj) + s(ai, bj)
∣∣

≤ R2Cµd(a,b)−2R. ��
Recall that a metric space (X, d) is said to be weakly geodesic [11,10]

if there exists δ1 ≥ 0 such that, for every pair of points x and y in X and
every t ∈ [0, d(x, y)], there exists a point a ∈ X such that d(a, x) ≤ t + δ1
and d(a, y) ≤ d(x, y) − t + δ1.

Proposition 14. The metric space (G, d̂) is weakly geodesic.
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Proof. Let x, y ∈ G and z ∈ G ∩ p[x, y]. By the definition of d̂ and
Proposition 10(b), we have

d̂(x, z) + d̂(z, y) − d̂(x, y) ≤ C1 + 2C2.

It follows that
d̂(x, z) ≤ d̂(x, y) + C1 + 2C2,

hence the image of the map

d̂(x, ·) : G ∩ p[x, y] → [0,∞),

is contained in [0, d̂(x, y) + C1 + 2C2]. Also, the image contains 0 and
d̂(x, y).

By Proposition 10(a), we have∣∣d̂(x, z′) − d̂(x, z)
∣∣ ≤ M

when d(z′, z) = 1. This, together with the fact that p[x, y] is a geodesic
path, implies that the image of the map

d̂(x, ·) : G ∩ p[x, y] → [0, d̂(x, y) + C1 + 2C2]
is M-dense in [0, d̂(x, y)], i.e. for every t ∈ [0, d̂(x, y)], there exists a ∈
G ∩ p[x, y] such that ∣∣d̂(x, a) − t

∣∣ ≤ M.

It follows that d̂(x, a) ≤ t + M, and by Proposition 10(b) we also have∣∣d̂(x, y) − d̂(x, a) − d̂(a, y)
∣∣ ≤ C1 + 2C2.

This implies that

d̂(a, y) ≤ d̂(x, y) − d̂(x, a) + C1 + 2C2

≤ d̂(x, y) − t + M + C1 + 2C2.

Therefore (G, d̂) is weakly geodesic for δ1 := M + C1 + 2C2. ��
Kasparov and Skandalis introduced the concept of bolicity in [11,10].

Definition 15. A metric space (X, d) is said to be bolic if there exists δ2 ≥ 0
with the following properties:

(B1) for any R > 0, there exists R′ > 0 such that for all a, a′, b, b′ ∈ X
satisfying

d(a, a′) + d(b, b′) ≤ R and d(a, b) + d(a′, b′) ≥ R′,

we have

d(a, b′) + d(a′, b) ≤ d(a, b) + d(a′, b′) + 2δ2; and
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(B2) there exists a map m : X × X → X, such that, for all x, y, z ∈ X, we
have

2d(m(x, y), z) ≤ (
2d(x, z)2 + 2d(y, z)2 − d(x, y)2) 1

2 + 4δ2.

(X, d) is called strongly bolic if it is bolic and the above condition (B1)
holds for every δ2 > 0 [13].

Proposition 16. The metric space (G, d̂) is strongly bolic.

Proof. Proposition 13 yields condition (B1) for all δ2 > 0. It remains to
show that there exist δ2 ≥ 0 and a map m : G × G → G, such that, for all
x, y, z ∈ G, we have

2d̂(m(x, y), z) ≤ (
2d̂(x, z)2 + 2d̂(y, z)2 − d̂(x, y)2

) 1
2 + 4δ2.

By Proposition 14 and its proof, there exists a vertex m(x, y) ∈ G ∩
p[x, y] such that

∣∣∣d̂(x, m(x, y)) − d̂(x, y)

2

∣∣∣ ≤ δ1 and
∣∣∣d̂(m(x, y), y) − d̂(x, y)

2

∣∣∣ ≤ δ1.

(5.1)

By the definition of δ-hyperbolicity, we know that either

(1) there exists a ∈ G ∩ p[z, y] such that d(m(x, y), a) ≤ δ + 1, or
(2) there exists b ∈ G ∩ p[x, z] such that d(m(x, y), b) ≤ δ + 1.

In case (1), we have∣∣d̂(z, m(x, y)) − d̂(z, a)
∣∣ ≤ d̂(m(x, y), a) ≤ δ + 1 + C2,∣∣d̂(y, m(x, y)) − d̂(y, a)
∣∣ ≤ d̂(m(x, y), a) ≤ δ + 1 + C2.

Hence, by Proposition 10(b), we obtain

d̂(z, m(x, y)) +d̂(x, y) ≤ d̂(z, a) + δ + 1 + C2 + d̂(x, y)

≤ d̂(z, a) + δ + 1 + C2 + d̂(x, m(x, y)) + d̂(m(x, y), y)

≤ d̂(z, a) + d̂(a, y) + d̂(x, m(x, y)) + 2δ + 2C2 + 2

≤ d̂(y, z) + d̂(x, m(x, y)) + δ′,

where δ′ := 2δ + 3C2 + 2. In case (2), we similarly have

d̂(z, m(x, y)) + d̂(x, y) ≤ d̂(x, z) + d̂(m(x, y), y) + δ′.

It follows from (5.1) that

d̂(z, m(x, y)) + d̂(x, y) ≤ sup
{
d̂(x, z) + d̂(y, m(x, y)), d̂(y, z)

+d̂(x, m(x, y))
} + δ′

≤ sup
{
d̂(x, z), d̂(y, z)

} + d̂(x, y)

2
+ δ1 + δ′.
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Hence

2d̂(z, m(x, y)) ≤ 2 sup
{
d̂(x, z), d̂(y, z)

} − d̂(x, y) + 4δ2,(5.2)

where δ2 := δ1+δ′
2 .

If t, u, and v are non-negative real numbers such that |u − v| ≤ t, then

(2u − v)2 ≤ 2u2 + 2t2 − v2.

Setting t := inf{d̂(x, z), d̂(y, z)}, u := sup{d̂(x, z), d̂(y, z)}, v := d̂(x, y),
we obtain

2 sup
{
d̂(x, z), d̂(y, z)

} − d̂(x, y) ≤ (
2d̂(x, z)2 + 2d̂(y, z)2 − d̂(x, y)2) 1

2 .

Therefore, by (5.2),

2d̂(z, m(x, y)) ≤ (
2d̂(x, z)2 + 2d̂(y, z)2 − d̂(x, y)2) 1

2 + 4δ2. ��
We summarize the results of this section.

Theorem 17. Every hyperbolic group G admits a metric d̂ with the follow-
ing properties.

(1) d̂ is G-invariant, i.e. d̂(g · x, g · y) = d̂(x, y) for all x, y, g ∈ G.
(2) d̂ is quasiisometric to the word metric d, i.e. there exist A > 0 and

B ≥ 0 such that

1

A
d̂(x, y) − B ≤ d(x, y) ≤ Ad̂(x, y) + B

for all x, y ∈ G.
(3) The metric space (G, d̂) is weakly geodesic and strongly bolic.

6. The Baum-Connes conjecture for hyperbolic groups

In this section, we combine Theorem 17 with Lafforgue’s work to prove the
main result of this paper.

Definition 18. An action of a topological group G on a topological space
X is called proper if the map G × X → X × X given by (g, x) �→ (x, gx)
is a proper map, that is the preimages of compact subsets are compact.

When G is discrete, an action is proper iff it is properly discontinuous,
i.e. if the set {g ∈ G

∣∣ K ∩ gK �= ∅} is finite for any compact K ⊆ X.
The following deep theorem was proved by Lafforgue using Banach

KK-theory.
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Theorem 19 (Lafforgue [13]). If a discrete group G has property RD,
and G acts properly and isometrically on a strongly bolic, weakly geodesic,
and uniformly locally finite metric space, then the Baum-Connes conjecture
holds for G.

Theorem 20. The Baum-Connes conjecture holds for hyperbolic groups
and their subgroups.

Proof. Let H be a subgroup of a hyperbolic group G. By Theorem 17(2),
there exist constants A > 0 and B ≥ 0 such that d(a, b) ≤ A d̂(a, b)+ B for
all a, b ∈ G. Hence (G, d̂) is uniformly locally finite and the H-action on
(G, d̂) is proper. By Theorem 17, (G, d̂) is weakly geodesic and strongly
bolic, and the H-action on (G, d̂) is isometric. By a theorem of P. de la
Harpe and P. Jolissaint, H has property RD [5,9]. Now Theorem 19 implies
Theorem 20. ��

Theorem 20 has been proved independently by Vincent Lafforgue using
a different and elegant method [14].

The following result is a direct consequence of Theorem 20.

Theorem 21. The Kadison-Kaplansky conjecture holds for any torsion free
subgroup G of a hyperbolic group, i.e. there exists no non-trivial projection
in the reduced group C∗-algebra C∗

r (G).

Recall that an element p in C∗
r (G) is said to be a projection if p∗ = p,

p2 = p. A projection in C∗
r (G) is said to be non-trivial if p �= 0, 1. It is well

known that the Baum-Connes conjecture for a torsion free discrete group G
implies the Kadison-Kaplansky conjecture for G [3,2].

Michael Puschnigg has independently proved Theorem 21 using a beau-
tiful local cyclic homology method [17]. Ronghui Ji has previously proved
that there exists no non-trivial idempotent in the Banach algebra 	1(G) for
any torsion free hyperbolic group [8].
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