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Abstract

A finitely presentable group G is hyperbolic if and only if the map H2
b (G, V ) → H2(G, V )

is surjective for any bounded G-module. The ‘only if’ direction is known and here we prove
the ‘if’ direction. We also consider several ways to define a linear homological isoperimetric
inequality.

1. Introduction

The question of cohomological description of hyperbolicity was considered by S. M. Gersten who
proved the following theorem.

THEOREM 1 ([3]). The finitely presented group G is hyperbolic if and only if H2
(∞)(G, �∞) = 0.

Here Hn
(∞)(G, V ) is the �∞-cohomology defined by bounded (not necessarily equivariant)

cellular cochains in the universal cover of a K (G, 1) complex with finitely many cells in the
dimensions up to n. This theorem was generalized by the author [10] to higher dimensions: if
G is hyperbolic then Hn

(∞)(G, V ) = 0 for any n � 2 and any normed vector space V (over Q or R).
The bounded cohomology of a group is defined by bounded equivariant cochains in the

homogeneous bar construction (see the definition in the next section). B. E. Johnson [8,
Theorem 2.5] characterized amenable groups by the vanishing of H1(L1(G), X∗), the first
cohomology of the Banach algebra L1(G). (The vanishing in higher dimensions also follows from
his argument. Bounded cohomology is an example of the cohomology above.) In [11, p. 1068]
G. A. Noskov also characterized amenable groups by the vanishing of the bounded cohomology for
the positive dimensions. We present this result in the following form.

THEOREM 2 (Johnson [8]). For a group G the following statements are equivalent.

(a) G is amenable.

(b) H1
b (G, V ∗) = 0 for any bounded G-module V .

(c) Hi
b(G, V ∗) = 0 for any i � 1 and any bounded G-module V .
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The expression ‘bounded G-module V ’ here is what we call a ‘bounded Banach RG-module’, and
V ∗ is the space conjugate to V .

The main result of this paper is in a sense an analogue of the above two theorems: we characterize
hyperbolic groups by bounded cohomology. It was shown in [9] that if G is a hyperbolic group then
the map Hi

b(G, V ) → Hi (G, V ), induced by inclusion, is surjective for any bounded QG-module
V and any i � 2 (see the definitions in the next section). In the present paper we show the converse.
When G is finitely presentable, the surjectivity of the above maps only in dimension 2 implies
hyperbolicity. Namely, we prove the following.

THEOREM 3 For a finitely presentable group G, the following statements are equivalent.

(a) G is hyperbolic.

(b) The map H2
b (G, V ) → H2(G, V ) is surjective for any bounded G-module V .

(c) The map Hi
b(G, V ) → Hi (G, V ) is surjective for any i � 2 and any bounded G-module V .

Here by a ‘bounded G-module’ we mean any one of the ten concepts M1(G) to M10(G) described
in section 5, see Theorem 9 for a more precise statement.

It is quite interesting that the same property can be characterized by the �∞-cohomology and
the bounded cohomology, two theories which do not seem to have much in common. Also, the
characterizations of hyperbolic and amenable groups seem strikingly similar. This similarity may
be worth further investigation.

There are two crucial points in our proof. First, for finitely presentable groups hyperbolicity is
equivalent to the existence of a linear isoperimetric inequality for real 1-cycles. This equivalence
was proved by Gersten. (It follows, for example, from [3, Proposition 3.6, Theorem 5.1, and
Theorem 5.7] (stated above).) This isoperimetric inequality for real cycles is a homological version
of the usual combinatorial isoperimetric inequality for loops. We give a direct proof of the fact that
the linear isoperimetric inequality for filling (usual) real 1-cycles with summable 2-chains implies
hyperbolicity. Secondly, one needs to pick appropriate coefficients V . We take V to be the space
of all boundaries of summable 2-chains in a cell complex with a nice G-action. Similar coefficients
(but Z-modules rather than R-modules or C-modules), and the universal cocycle associated with
them were used by S. M. Gersten [7, Chapter 12] to introduce Z-metabolic (or simply metabolic)
groups.

2. Preliminaries

Let F stand for one of the fields Q, R or C, and let A stand for one of the rings Z, Q, R or C.

2.1. Abelian group norms

A normed abelian group A is an abelian group with an abelian group norm | · | : A → R+ satisfying

• |a| = 0 if and only if a = 0, and

• |a + a′| � |a| + |a′|
for all a, a′ ∈ A.
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2.2. Norms

A normed vector space W over F is a vector space with a norm | · | : W → R+ satisfying

• |w| = 0 if and only if w = 0,

• |w + w′| � |w| + |w′|, and

• |αw| = |α| · |w|
for all w, w′ ∈ W and α ∈ F.

Of course, each norm on W is an abelian group norm, but not conversely.

2.3. �1-norm

Let a free A-module M have a preferred basis {mi , i ∈ I }. The �1-norm | · |1 on M (with respect to
this basis) is given by ∣∣∣∣∣∑

i∈I

αi mi

∣∣∣∣∣
1

:=
∑
i∈I

|αi |.

The �1-norm is an abelian group norm. Moreover, if M happens to be a vector space over F, then
it is a norm.

2.4. �∞-norm

Suppose that (W, | · |1) and (W ′, | · |) are normed vector spaces, where W is equipped with the
�1-norm | · |1 with respect to some preferred basis {wi , i ∈ I }. For a linear map ϕ : W → W ′, the
�∞-norm of ϕ, |ϕ|∞, is the operator norm of ϕ, that is, |ϕ|∞ is the smallest number K (possibly
infinity) such that |ϕ(w)| � K |w|1 for each w ∈ W . One checks that

|ϕ|∞ = sup
i∈I

∣∣ϕ(wi )
∣∣.

2.5. Cell complexes

By a cell complex we mean a combinatorial cell complex, that is, the one in which the boundary of
each cell σ is cellulated and the gluing map of σ restricts to homeomorphisms on the open cells of
this cellulation. In particular, each 2-cell can be viewed as a polygon.

We always put the path metric, which is induced by assigning length 1 to each edge, on the 1-
skeleta of cell complexes. A cellular ball of radius r centred at a vertex x is the union of all closed
cells whose vertices lie r -close to x .

If X is a cell complex and Ci (X, A) is the space of cellular i-chains, we always give Ci (X, A)

the �1-norm with respect to the standard basis consisting of i-cells.

2.6. Filling norm for compactly supported chains

Gersten introduced this useful concept (sometimes also called ‘standard norm’).
If G is a finitely presentable group, then there exists a contractible cell complex X with a free

cellular G-action such that the induced action on the 2-skeleton of X is cocompact. In particular,
the boundary homomorphism ∂2 : C2(X, A) → C1(X, A) is bounded (with respect to the �1-norms
in the domain and the target).
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The filling norm | · | f c,A on the space B1(X, A) of 1-boundaries is given by

|b| f c,A := inf
{ |a|1

∣∣ a ∈ C2(X, A) and ∂a = b
}
.

In other words, | · | f c,A is the abelian group norm induced by the map ∂2 : C2(X, A) → C1(X, A)

on its image. One checks that | · | f c,Z is an abelian group norm, and | · | f c,Q and | · | f c,R are norms.
(The condition |w| = 0 if and only if w = 0 holds because | · | f c,A dominates the �1-norm on
B1(X, A).)

2.7. �1-completion

For X as above and i = 1, 2, let C (1)
i (X, F) be the set of all (absolutely) summable i-chains in

X . Since the G-action on the 2-skeleton of X is cocompact, the boundary homomorphism ∂̂i :
C (1)

i (X, F) → C (1)
i−1(X, F), i = 1, 2, is well defined and bounded with respect to the �1-norm in the

domain and in the target. Also, ∂̂i commutes with the G-action.
Write B(1)

i (X, F) := Im ∂̂i+1, Z (1)
i (X, F) := Ker ∂̂i .

2.8. Filling norm for summable chains

Now we consider ‘the complete version’ of the filling norm. The norm | · | f 1,F on the space

B(1)
1 (X, F) is given by

|b| f 1,F := inf
{|a|1

∣∣ a ∈ C (1)
2 (X, F) and ∂a = b

}
.

Again, since ∂̂2 : C (1)
2 (X, F) → C (1)

1 (X, F) is bounded, | · | f 1,F dominates | · |1 on B(1)
1 (X, F) and

therefore | · | f 1,F is indeed a norm.

2.9. Bounded cohomology

An FG-module is called bounded if it is normed as a vector space over F and G acts on it by linear
operators of uniformly bounded norms. For a bounded FG-module V , the bounded cohomology of
G with coefficients in V , H∗

b (G, V ), is the homology of the cochain complex

0−→C0
b(G, V )

δ0−→ C1
b(G, V )

δ1−→ C2
b(G, V )

δ2−→ . . . ,

where

Ci
b(G, V ) := {α : Gi+1 → V | α is a bounded G-map} (1)

and the coboundary map δi is defined by

δiα
([x0, . . . , xi+1]

) :=
i+1∑
k=0

(−1)kα
([x0, . . . , x̂k, . . . , xi+1]

)
. (2)

Here Gi+1 is considered with the diagonal G-action by left multiplication, and by bounded G-map
we mean a G-map whose image is bounded with respect to the norm on V .

Equivalently, Ci
b(G, V )⊆ HomFG(Ci (G, F), V ) is the subspace of all FG-morphisms

Ci (G, F) → V which are bounded as linear maps, where Ci (G, F) is the space of all chains (that is,
finite support functions) Gi+1 → F given the �1-norm with respect to the standard basis Gi+1. The
coboundary homomorphism δ in Ci

b(G, V ) is the dual of the boundary morphism ∂ in Ci (G, F).
The spaces Ci

b(G, V ) are naturally given the �∞-norm dual to the �1-norm on Ci (G, F).
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3. Summable 1-chains
In this section we prove that certain summable 1-chains on a graph can be approximated in a good
way by good compactly supported chains. These results (though not in full generality) will be
needed in section 4 for isoperimetric inequalities. Essentially, we generalize the following theorem.

THEOREM 4 (Allcock–Gersten [1]). If  is a graph and f is a summable real-valued 1-cycle on ,
then there is a countable coherent family C of simple circuits in  and a function g : C → [0, ∞)

such that f = ∑
C g(c)c.

‘Coherent’ here means that, for any such f , | f |1 = ∑
C g(c)|c|1.

Let  be a graph. As a part of the structure, we assign an orientation to each edge of . Therefore
‘a 1-chain on ’ is the same thing as ‘a function on the edges of ’. The orientation on  determines
the initial vertex ιe and the terminal vertex τe for each edge e. A directed path p in  is a sequence
of edges (e1, . . . , en) with τei = ιei+1. The initial vertex ιp of the path p is ιe1 and the terminal
vertex τp of p is τen . A directed path (e1, . . . , en) is simple if the vertices ιe1, . . . , ιen are all
distinct. If T is a set of vertices in , we say that p is a T -path if it is a directed path in  such that
ιp, τp ∈ T or ιp = τp (in other words, the homological boundary of p is supported in T ).

Let f be a(n absolutely) summable 1-chain in . For a vertex v in , define

Divv( f ) :=
∑
ιe=v

f (e) −
∑
τe=v

f (e),

where e stands for edges in  (with the fixed orientation).
By ( f ) we denote the same graph  but with an orientation on the edges chosen so that f (e) � 0

for each edge e. Let +( f ) be the minimal subgraph of ( f ) containing all the edges e with
f (e) �= 0 (that is, f (e) > 0).

LEMMA 5 Let  be a graph and T be a set of vertices in . If h is a summable real 1-chain such
that supp(∂h)⊆T and +(h) contains no non-trivial simple T -paths, then h = 0.

Proof. (cf. [1, Lemma 3.2]). Suppose to the contrary that h �= 0, that is, there is an edge e′ in +(h)

(hence h(e′) > 0). Let ′ be the (non-empty) union of all directed paths (e1, . . . , en) in +(h)

with e1 = e′. Then e′ is the only edge in ′ incident on ιe′ (otherwise there would be a non-trivial
directed edge cycle in ′⊆+(h)).

Case 1. We assume for the moment that ′ does not contain vertices from T , except possibly for
ιe′. Let h′ be the summable chain in  which coincides with h on ′ and takes the value 0 outside. If
v is any vertex in ′ different from ιe′, then v �∈ T ⊇ supp(∂ f ) and also, by definition, ′ contains
all the edges e of +(h) with ιe = v, so

0 = Divv(h) � Divv(h
′).

Obviously, for the vertex ιe′ the strong inequality holds:

0 < h(e′) = h′(e′) = Divιe′(h′). (3)

Since h′ is (absolutely) summable, rearranging the terms we get

0 �
∑

v vertex in 

Divv(h
′) =

∑
v vertex in 

(∑
ιe=v

h′(e) −
∑
τe=v

h′(e)
)

=
∑

e edge in 

(
h′(e) − h′(e)

) = 0.
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Thus Divv(h′) = 0 for any v, which contradicts (3).

Case 2. If ′ contains s vertex v′ from T and v′ �= ιe′, then do the same construction in the other
direction: let ′′ be the union of all the paths (e1, . . . , en) in +(h) with en = e′. Now ′′ does not
contain a vertex from T , except possibly for τe′, because otherwise we could connect such a vertex
to v′ with a T -path in +(h), which would contradict the assumptions of the lemma. So the same
argument as in case 1 works for ′′.

Each T -path p in ( f ) gives rise to an integer 1-chain in  which we also denote by p. In the
following theorem, A denotes Z, Q, or R.

THEOREM 6 Let  be a graph, T a set of vertices in  and f a summable 1-chain on  with
coefficients in A and supp(∂ f )⊆T .

(a) There is a countable family P = {p1, p2, . . . } of simple T -paths in +( f ) and a sequence
{αi } in [0, ∞) ∩ A such that f = ∑

i αi pi and | f |1 = ∑
i αi |pi |1.

(b) If the above f happens to have finite support, then P can be chosen to be finite.

This is a generalization of Theorem 4 and our proof of Theorem 6 follows the lines of [1, proof
of Theorem 3.3] (cf. also [4, Lemma 3.6]), though we make the proof a bit more explicit without
referring to the Zorn’s lemma.

Proof. Since f is summable, +( f ) has only countably many edges. Let P = {p1, p2, . . . } be the
(countable) set of all simple T -paths in +( f ). If the support of f is finite, then P is finite.

For two summable 1-chains f ′ and f ′′ in  we will write f ′ � f ′′ if f ′(e) � f ′′(e) for each
edge in ( f ) (with the orientation defined in ( f )).

Let α1 be the (non-negative) real number which is maximal among those satisfying

α1 p1 � f .

Note that α1 ∈ [0, ∞) ∩ A since α1 coincides with the minimal value of f on the edges of p1.
Continue inductively: if α1, . . . , αi−1 are constructed, let αi be the maximal real number satisfying

α1 p1 + · · · + αi−1 pi−1 + αi pi � f .

Inductively we see that each αi is in [0, ∞) ∩ A.
Write fi := α1 p1 + · · · + αi pi . Since all the chains are non-negative,

| fi |1 = α1|p1|1 + · · · + αi |pi |1.

The sequence fi is monotone and bounded by the summable chain f , so the chain

f̄ :=
∑

i

αi pi

is well defined and satisfies
| f̄ |1 :=

∑
i

αi |pi |1.

Also, 0 � f̄ � f , therefore 0 � f − f̄ � f .
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We prove now that +( f − f̄ ) does not contain non-trivial simple T -paths. If it contained a
non-trivial simple T -path p, then αp � f − f̄ � f for some α > 0. Therefore p would be a simple
path in +( f ) as well, that is, p = pi for some i , and

fi + αpi � f̄ + αpi � f .

This contradicts the maximality in the definition of αi .
Also supp(∂( f − f̄ ))⊆supp(∂ f ) ∪ supp(∂ f̄ )⊆T so, by Lemma 5, f − f̄ = 0, that is, f = f̄ =∑
i αi pi and | f |1 = | f̄ |1 = ∑

i αi |pi |1. This finishes the proof of Theorem 6.

4. Linear isoperimetric inequalities

One could mean many different things by ‘a linear homological isoperimetric inequality’. In this
section we attempt to present a comprehensive list of possible interpretations and show that they are
all equivalent to hyperbolicity. Most of this was shown by Gersten in various papers [1, 3, 5, 7]; we
just collect the statements into one theorem and sketch the proofs.

THEOREM 7 Let G be a finitely presentable group G and let X be a simply connected cellular
2-complex with a free cocompact G action. Then the following statements are equivalent.

(0) G is hyperbolic.

(1) There exists K1 � 0 such that, for any b ∈ B1(X, Z), |b| f c,Z � K1 |b|1.

(1’) There exists K ′
1 � 0 such that for any b ∈ B1(X, Z) there exists a ∈ C2(X, Z) with ∂a = b

and |a|1 � K ′
1 |b|1.

(2) There exists K2 � 0 such that, for any b ∈ B1(X, Z), |b| f c,Q � K2 |b|1.

(3) There exists K3 � 0 such that, for any b ∈ B1(X, Q), |b| f c,Q � K3 |b|1.

(3’) There exists K ′
3 � 0 such that for any b ∈ B1(X, Q) there exists a ∈ C2(X, Q) with ∂a = b

and |a|1 � K ′
3 |b|1.

(4) There exists K4 � 0 such that, for any b ∈ B1(X, R), |b| f c,R � K4 |b|1.

(4’) There exists K ′
4 � 0 such that for any b ∈ B1(X, R) there exists a ∈ C2(X, R) with ∂a = b

and |a|1 � K ′
4 |b|1.

(5) There exists K5 � 0 such that, for any b ∈ B1(X, R)⊆B(1)
1 (X, R), |b| f 1,R � K5 |b|1.

(6) There exists K6 � 0 such that, for any b ∈ B(1)
1 (X, R), |b| f 1,R � K6 |b|1.

(6’) There exists K ′
6 � 0 such that, for any b ∈ B(1)

1 (X, R) there exists a ∈ C (1)
2 (X, R) with

∂̂2a = b and |a|1 � K ′
6 |b|1.

(7) There exists K7 � 0 such that, for any z ∈ Z (1)
1 (X, R), |z| f 1,R � K7 |z|1.

(7’) There exists K ′
7 � 0 such that for any z ∈ Z (1)

1 (X, R) there exists a ∈ C (1)
2 (X, R) with ∂a = z

and |a|1 � K ′
7 |z|1.
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(8) There exists K8 � 0 such that, for any b ∈ B1(X, C), |b| f c,C � K8 |b|1.

(8’) There exists K ′
8 � 0 such that for any b ∈ B1(X, C) there exists a ∈ C2(X, C) with ∂a = b

and |a|1 � K ′
8 |b|1.

(9) There exists K9 � 0 such that, for any b ∈ B1(X, C)⊆B(1)
1 (X, C), |b| f 1,C � K9 |b|1.

(10) There exists K10 � 0 such that, for any b ∈ B(1)
1 (X, C), |b| f 1,C � K10 |b|1.

(10’) There exists K ′
10 � 0 such that for any b ∈ B(1)

1 (X, C) there exists a ∈ C (1)
2 (X, C) with

∂̂2a = b and |a|1 � K ′
10 |b|1.

(11) There exists K11 � 0 such that, for any z ∈ Z (1)
1 (X, C), |z| f 1,C � K11 |z|1.

(11’) There exists K ′
11 � 0 such that for any z ∈ Z (1)

1 (X, C) there exists a ∈ C (1)
2 (X, C) with ∂a = z

and |a|1 � K ′
11 |z|1.

Remark. Later in the paper only implications (5)⇒(0) and (9)⇒(0) will be used. The author’s
contribution here is implication (5)⇒(0) and the implications involving complex numbers. This
article seems to be the first place where complex numbers are used for isoperimetric inequalities.

Sketch of proof. Equivalences (1)⇔(1′), (3)⇔(3′), (4)⇔(4′), (6)⇔(6′), (7)⇔(7′) (8)⇔(8′),
(10)⇔(10′), (11)⇔(11′) follow from the definition of the filling norm. (In each case, K ′ can
be taken to be K + 1.)
(0)⇒(1′) Hyperbolic groups are defined as those having a linear isoperimetric inequality for filling
edge-loops with combinatorial disks. Each b ∈ B1(X, Z) is a sum of such loops (viewed as chains).
Let a be the sum of fillings for these loops. (See [6], where the converse is proved.)
(1)⇒(2) is obvious because | · | f c,Q � | · | f c,Z on B1(X, Z). Similarly, (4)⇒(5).
(2)⇒(3) Let  := X (1) and b ∈ B1(X, Q). Since b is a summable cocycle, being the boundary
of a summable 2-chain, it follows b: that Theorem 4 b = ∑

C g(c)c for some g : C → [0, ∞).
The main point here is that the elements of C are integer 1-cycles in X . Also, since g is rational, g
can be chosen to take rational values (see Theorem 6 for the proof). Fill each c ∈ C by an integer
2-chain ac with a linear isoperimetric inequality; then

∑
C g(c)ac is a rational filling of b with a

linear isoperimetric inequality.
(3′)⇒(4′) and (5)⇒(7) are analogous to (2)⇒(3). (See also, [1, Proposition 3.6] for the proof of
(1)⇔(3)⇔(4).)
(7′)⇒(6′), (6)⇒(5) are obvious.
(4′)⇒(8′) We need to pass from R to C. If b ∈ B1(X, C), then Re b and Im b lie in b ∈ B1(X, R),
so, by (4’), there exist a, a′ ∈ C2(X, R) with ∂a = Re b, ∂a′ = Im b, |a|1 � K ′

4 |Re b|1, |a′|1 �
K ′

4 |Im b|1. Then ∂(a + ia′) = b and

|a + a′|1 � K ′
4 |Re b|1 + K ′

4 |Im b|1 � 2K ′
4 |b|1,

so we set K ′
8 := 2K ′

4.
(8′)⇒(4′) We pass from C to R. Each b ∈ B1(X, R) can be viewed as an element of B1(X, C),
therefore, by (8’), there exists a ∈ C2(X, C) with with ∂a = b and |a|1 � K ′

8 |b|1. Let ā be the
complex conjugate of a. Since b is real, ∂(Re a) = Re b = b and |Re a|1 � |a|1 � K ′

8 |b|1, so we
set K ′

4 := K ′
8.
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(5)⇔(9), (6′)⇔(10′), (7′)⇔(11′) These implications are similar to (4′)⇔(8′).
We devote the rest of this section to the proof of the remaining implication (5)⇒(0). It follows

immediately from the following proposition (cf. [3, Proposition 5.4])

PROPOSITION 8 Let G and X be as in the hypotheses of Theorem 7 and suppose G is not
hyperbolic. Then there exist C > 0 and a sequence of geodesic quadrilaterals w in X (1) with

|w|1 → ∞ and |w| f 1,R � C(|w|1)2.

Here, abusing notation, we identify the quadrilateral w and the corresponding integral 1-chain.

Proof. We modify the techniques of [2], [3] which in turn used a modification of Ol’shanskii’s
method of layers [12].

Each 2-cell in X is a polygon whose sides are glued to edges in X (1). Let M be the maximal
number of sides over all 2-cells in X . In particular, all combinatorial boundaries of 2-cells in X
have diameter at most M , and also, for any 2-chain a in X ,

|∂a|1 � M |a|1. (4)

If G is not hyperbolic, Ol’shanskii shows that there are arbitrarily thick geodesic quadrilaterals
in X (1), and Gersten states more precisely that (see [3, Proposition 5.2] in which we make the
substitution t = 8Mr ) there exist

• a sequence of integers r tending to infinity,

• a geodesic quadrilateral w = w(r) for each r ,

• a (geodesic) side S in each w, and

• a subinterval [x, y]⊆S with the midpoint z

such that

• the length of [x, y] is 4Mr ,

• the distance from z to the sides of w other than S is at least 4Mr , and

• the perimeter of w is at most 80Mr .

This last property implies that

|w|1 � 80Mr . (5)

Since the interval [x, y] does not intersect other sides of the quadrilateral,

|w|1 � 4Mr → ∞ as r → ∞.

For each positive integer k � r , let Bk be the simplicial ball of radius 4Mk centred at z. If a is
any summable chain with ∂a = w, denote by ak the restriction of a to (the 2-cells of) Bk \ Bk−1
(with ak = 0 outside). Let sk and tk be the two points on [x, y] which are at distance 4Mk − 2M
from z (see Fig. 1), and

Ak := {v ∈ [x, y] ∣∣ 4M(k − 1) � d(z, v) � 4Mk − 2M},
A′

k := {v ∈ [x, y] ∣∣ 4Mk − 2M � d(z, v) � 4Mk}.
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�

z
�
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�

y
�

sk
�

tkS

q ′
k

qk

Bk−1

w

Fig. 1 The filling a of b.

Here ∂ak is a 1-cycle which takes the value 1 on the edges of [x, y] incident on sk and tk (since
these edges are ‘deep inside’ Bk \ Bk−1). Also, ∂ak splits as the sum of a 1-chain qk supported in

{M − neighbourhood of Bk−1} ∪ Ak,

and a 1-chain q ′
k supported in

{M − neighbourhood of X \ Bk} ∪ A′
k .

These two supports intersect only in T := {sk, tk : 0 < k � r}, and the above observation implies
that

∂qk = tk − sk and ∂q ′
k = sk − tk . (6)

By Theorem 6, each qk splits as a (finite) linear combination of T -paths

qk =
∑

i

αi pi

such that
αi � 0 and |qk |1 =

∑
i

αi |pi |1.

Those T -paths p j which have non-trivial boundary must be of length at least d(sk, tk) � 8Mk−4M ,
and (6) says that

∑
j α j � 1, so

|qk |1 =
∑

i

αi |pi |1 �
∑

j

α j (8Mk − 4M) � 8Mk − 4M .

The same holds for q ′
k , hence

|∂ak |1 = |qk |1 + |q ′
k |1 � 2(8Mk − 4M) = 16Mk − 4M .
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By (4),

|ak |1 � 1

M
|∂ak |1 � 16k − 4,

and since the chains ak have disjoint supports,

|a|1 �
r∑

k=1

|ak |1 �
r∑

k=1

(16k − 4) = 16
r(r + 1)

2
− 4r � 8r2.

Then, by (5),

|a|1 � 8

( |w|1
80M

)2

= 1

800M2
· (|w|1)2.

Since this is true for any summable filling a of w, it follows that

|w| f 1,R � 1

800M2
· (|w|1)2,

so we put C := 1
800 M2 . Proposition 8 and Theorem 7 are proved.

5. The characterization

In this section we characterize hyperbolic groups by bounded cohomology.
Let G be a finitely presentable group and let M(G) be one of the following ten classes of

modules.

• M1(G), the class of bounded QG-modules. A QG-module is called bounded if it is normed as
a vector space over Q and G acts on it by linear operators of uniformly bounded norms.

• M2(G), the class of isometric QG-modules. A QG-module is called isometric if it is bounded
and, moreover, the G-action preserves its norm.

• M3(G), analogously, the class of bounded RG-modules.

• M4(G), analogously, the class of isometric RG-modules.

• M5(G), analogously, the class of bounded Banach RG-modules, that is, bounded RG-modules
which are Banach spaces with respect to their norms.

• M6(G), analogously, the class of isometric Banach RG-modules.

• M7(G), the class of bounded CG-modules.

• M8(G), the class of isometric CG-modules.

• M9(G), analogously, the class of bounded Banach CG-modules.

• M10(G), the class of isometric Banach CG-modules.

Obviously, M10(G)⊆M(G)⊆M1(G) for each such M(G).
As promised in the introduction, Theorem 3 is stated more precisely as follows.

THEOREM 9 Let G be a finitely presentable group, and M(G) one of the classes M1(G) to
M10(G) described above. Then the following statements are equivalent.

(a) G is hyperbolic.
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(b) The map H2
b (G, V ) → H2(G, V ) is surjective for any V ∈ M(G).

(c) The map Hi
b(G, V ) → Hi (G, V ) is surjective for any i � 2 and any V ∈ M(G).

Proof. (a)⇒(c) was shown in [9] for the largest class M1(G). Property (c) for M1(G) implies the
same property for each of the classes M1(G) to M10(G). The implication (c)⇒(b) is obvious. It
only remains to prove (b)⇒(a) for the class M10(G). Below we present the proof of (b)⇒(a) for
class M6(G), since real coefficients are often used. To show (b)⇒(a) for class M10(G) the reader
would just need to replace R by C everywhere.

5.1. Proof of (b)⇒(a) for class M6(G)

Since G is finitely presentable, there exists a contractible cell complex X with a free cellular G-
action such that the induced action on the 2-skeleton of X is cocompact. We take V to be B(1)

1 (X, R)

with the filling norm | · | f 1,R which we denote for simplicity by | · | f . The vector space V is

Banach as the quotient of the Banach space C (1)
2 (X, R) by the (closed) kernel of ∂̂2 : C (1)

2 (X, R) →
C (1)

1 (X, R). In particular, V ∈ M6(G).
Let Y be the geometric realization of the homogeneous bar-construction for G, that is, Y is

the simplicial complex whose k-simplices are labelled by ordered (k + 1)-tuples [x0, . . . , xk] of
elements of the group G, and each simplex labeled [x0, . . . , x̂i , . . . , xk] is identified with the i th
face of [x0, . . . , xk]. The action of G on Y is diagonal:

g · [x0, . . . , xk] := [g · x0, . . . , g · xk].
Let CX∗ and CY∗ be the augmented chain complexes

. . . −→C2(X, R)
∂2−→ C1(X, R)

∂1−→ C0(X, R)
ε−→ R−→0

and
. . . −→C2(Y, R)

∂2−→ C1(Y, R)
∂1−→ C0(Y, R)

ε−→ R−→0 ,

respectively. Both X and Y are contractible, hence CX∗ and CY∗ are acyclic. Both CX∗ and CY∗ have
free RG-modules in each non-negative dimension. Also CX

i is finitely generated as an RG-module
for i = 0, 1, 2.

Obviously, CX∗ and CY∗ coincide in the negative dimensions. By the standard uniqueness of
resolutions property, there exist homotopy equivalences ϕ∗ : CY∗ → CX∗ and ψ∗ : CX∗ → CY∗
which are identities in dimension −1. It is important that ϕ∗ and ψ∗ are chain maps in the category
of RG-modules, in particular, for each i , ϕi and ψi are linear maps commuting with the G-action.

For the dual cochain complexes

Ci
X := C∗(X, V ) = HomRG(CY

i , V ) and Ci
Y := C∗(Y, V ) = HomRG(CY

i , V )

and the dual maps
ϕ∗ : C∗

X → C∗
Y and ψ∗ : C∗

Y → C∗
X ,

the cochain map ψ∗ ◦ ϕ∗ is homotopic to the identity map, hence ψ∗ ◦ ϕ∗ induces the identity map
on cohomology H∗(G, V ) in the positive dimensions.

The universal cocycle in C2
X is the 2-cochain u : CX

2 → V which coincides with the composition

C2(X, R)
∂2−→ B1(X, R) ↪→ B(1)

1 (X, R).



BOUNDED COHOMOLOGY CHARACTERIZES HYPERBOLIC GROUPS 71

One checks that u is indeed a cocycle. By the above observations,

u = (ψ2 ◦ ϕ2)(u) + δv (7)

for some 1-cochain v : CX
1 → V .

Since ϕ2(u) is a cocycle in C2
Y and the map H2

b (G, V ) → H2(G, V ) is surjective by the
assumption,

ϕ2(u) = u′ + δv′ (8)

for a 1-cochain v′ ∈ C1
Y and a bounded 2-cocycle u′ ∈ C2

Y , that is,

|u′|∞ < ∞. (9)

The above information is demonstrated by the diagrams

a, b ∈ CX∗
ψ∗

��

= C∗(X, R)

and

u, v ∈ C∗
X

ϕ∗
��

= C∗(X, V )

CY∗

ϕ∗

��

= C∗(Y, R) u′, v′ ∈ C∗
Y

ψ∗
��

= C∗(Y, V ).

We also have the standard pairings
〈·, ·〉 : Ci

X ⊕ CX
i → V and

〈·, ·〉 : Ci
Y ⊕ CY

i → V .

Fix any vertex y in Y (that is, y ∈ G). For each 1-chain b = ∑
y0,y1∈G β[y0,y1][y0, y1] in Y , the

cone over b with vertex y is the 2-chain

[y, b] :=
∑

y0,y1∈G

β[y0,y1][y, y0, y1].

If b happens to be a cycle, then ∂[y, b] = b. Obviously,∣∣∣[y, b]
∣∣∣
1

= |b|1.

In other words, [y, b] is a filling of b in Y , and the above formula says that these fillings satisfy a
linear isoperimetric inequality in Y . We want the same property in X to show hyperbolicity, so we
will use the maps ϕ∗ and ψ∗ to ‘transfer’ the linear isoperimetric inequality from Y to X using the
fact that the universal cocycle is cohomologous to a bounded cocycle.

Note also that if α is a cocycle in Ci
Y and c ∈ CY

i , then c − [y, ∂c] is a cycle, hence a boundary,
so

〈
α, c − [y, ∂c]〉 = 0 and 〈

α, c
〉 = 〈

α, [y, ∂c]〉. (10)

Now with the above setup we can finish the proof of Theorem 9. Pick any 1-boundary b ∈
B1(X, R) and any 2-chain a with ∂a = b. We will show that |b| f � K |b|1 for some uniform
constant K , therefore G will be hyperbolic by implication (5)⇒(0) in Theorem 7. (By implication
(9)⇒(0) in case of complex coefficients.)

By equality (7),

b = ∂a = 〈
u, a

〉 = 〈
(ψ2 ◦ ϕ2)(u) + δv, a

〉 = 〈
(ψ2 ◦ ϕ2)(u), a

〉 + 〈
v, b

〉
.
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Since ϕ2(u) is a cocycle, and using (10) and (8),〈
(ψ2 ◦ ϕ2)(u), a

〉 = 〈
ϕ2(u), ψ2(a)

〉 = 〈
ϕ2(u), [y, ∂(ψ2(a))]〉

= 〈
ϕ2(u), [y, ψ1(b)]〉 = 〈

u′ + δv′, [y, ψ1(b)]〉 = 〈
u′, [y, ψ1(b)]〉 + 〈

v′, ∂[y, ψ1(b)]〉
= 〈

u′, [y, ψ1(b)]〉 + 〈
v′, ψ1(b)

〉 = 〈
u′, [y, ψ1(b)]〉 + 〈

ψ1(v′), b
〉
.

So, combining the above two formulae,

b = 〈
u′, [y, ψ1(b)]〉 + 〈

ψ1(v′) + v, b
〉
,

|b| f �
∣∣∣〈u′, [y, ψ1(b)]〉∣∣∣

f
+

∣∣∣〈ψ1(v′) + v, b
〉∣∣∣

f

� |u′|∞ ·
∣∣∣[y, ψ1(b)]

∣∣∣
1
+

∣∣∣ψ1(v′) + v

∣∣∣∞ · |b|1
= |u′|∞ · ∣∣ψ1(b)

∣∣
1 +

∣∣∣ψ1(v′) + v

∣∣∣∞ · |b|1
�

(
|u′|∞ · |ψ1|∞ +

∣∣∣ψ1(v′) + v

∣∣∣∞)
· |b|1.

This will give the desired linear isoperimetric inequality once we prove that all the norms in the
parentheses are finite.

The cochain u′ is bounded by definition (by a constant depending only on the choice of G and X ,
see (9)). The maps ψ1 : CX

1 → CY
1 and ψ1(v′)+ v : CX

1 → V are both linear maps commuting with
the G-action. Their boundedness (by constants depending only on G and X ) is immediate from the
following simple observation which deserves the status of a lemma.

LEMMA 10 Let (W, | · |1) and (W ′, | · |) be two normed vector spaces over R, where | · |1 is the
�1-norm on W with respect to some basis. Suppose a group G acts on both W and W ′ such that

• on W it permutes the basis so that there are only finitely many orbits of basis elements, and

• on W ′ it preserves the norm | · |.
Then, if f : W → W ′ is a linear map commuting with the G-action, then f is bounded, that is,
| f |∞ < ∞.

Proof. If w1 and w2 are two basis elements of W in the same G-orbit, that is, w1 = g · w2, then

| f (w1)| = | f (g · w2)| = |g · f (w2)| = | f (w2)|.

Since there are only finitely many G-orbits of basis elements in W , | f (·)| takes only finitely many
values on the basis elements, hence | f |∞ < ∞. This proves Lemma 10 and Theorem 9.
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