BOUNDED COHOMOLOGY CHARACTERIZES HYPERBOLIC GROUPS

by IGOR MINEYEV †
(University of South Alabama, Department of Mathematics \& Statistics, ILB 325, Mobile, AL 36688, USA)

[Received 21 June 2001]

Abstract

A finitely presentable group G is hyperbolic if and only if the map $H_{b}^{2}(G, V) \rightarrow H^{2}(G, V)$ is surjective for any bounded G-module. The 'only if' direction is known and here we prove the 'if' direction. We also consider several ways to define a linear homological isoperimetric inequality.

1. Introduction

The question of cohomological description of hyperbolicity was considered by S. M. Gersten who proved the following theorem.

THEOREM 1 ([3]). The finitely presented group G is hyperbolic if and only if $H_{(\infty)}^{2}\left(G, \ell_{\infty}\right)=0$.
Here $H_{(\infty)}^{n}(G, V)$ is the ℓ_{∞}-cohomology defined by bounded (not necessarily equivariant) cellular cochains in the universal cover of a $K(G, 1)$ complex with finitely many cells in the dimensions up to n. This theorem was generalized by the author [10] to higher dimensions: if G is hyperbolic then $H_{(\infty)}^{n}(G, V)=0$ for any $n \geqslant 2$ and any normed vector space V (over \mathbb{Q} or \mathbb{R}).

The bounded cohomology of a group is defined by bounded equivariant cochains in the homogeneous bar construction (see the definition in the next section). B. E. Johnson [8, Theorem 2.5] characterized amenable groups by the vanishing of $H^{1}\left(L^{1}(G), X^{*}\right)$, the first cohomology of the Banach algebra $L^{1}(G)$. (The vanishing in higher dimensions also follows from his argument. Bounded cohomology is an example of the cohomology above.) In [11, p. 1068] G. A. Noskov also characterized amenable groups by the vanishing of the bounded cohomology for the positive dimensions. We present this result in the following form.

Theorem 2 (Johnson [8]). For a group G the following statements are equivalent.

(a) G is amenable.
(b) $H_{b}^{1}\left(G, V^{*}\right)=0$ for any bounded G-module V.
(c) $H_{b}^{i}\left(G, V^{*}\right)=0$ for any $i \geqslant 1$ and any bounded G-module V.

[^0]The expression 'bounded G-module V ' here is what we call a 'bounded Banach $\mathbb{R} G$-module', and V^{*} is the space conjugate to V.

The main result of this paper is in a sense an analogue of the above two theorems: we characterize hyperbolic groups by bounded cohomology. It was shown in [9] that if G is a hyperbolic group then the map $H_{b}^{i}(G, V) \rightarrow H^{i}(G, V)$, induced by inclusion, is surjective for any bounded $\mathbb{Q} G$-module V and any $i \geqslant 2$ (see the definitions in the next section). In the present paper we show the converse. When G is finitely presentable, the surjectivity of the above maps only in dimension 2 implies hyperbolicity. Namely, we prove the following.

ThEOREM 3 For a finitely presentable group G, the following statements are equivalent.
(a) G is hyperbolic.
(b) The map $H_{b}^{2}(G, V) \rightarrow H^{2}(G, V)$ is surjective for any bounded G-module V.
(c) The map $H_{b}^{i}(G, V) \rightarrow H^{i}(G, V)$ is surjective for any $i \geqslant 2$ and any bounded G-module V.

Here by a 'bounded G-module' we mean any one of the ten concepts $\mathcal{M}_{1}(G)$ to $\mathcal{M}_{10}(G)$ described in section 5, see Theorem 9 for a more precise statement.

It is quite interesting that the same property can be characterized by the ℓ_{∞}-cohomology and the bounded cohomology, two theories which do not seem to have much in common. Also, the characterizations of hyperbolic and amenable groups seem strikingly similar. This similarity may be worth further investigation.

There are two crucial points in our proof. First, for finitely presentable groups hyperbolicity is equivalent to the existence of a linear isoperimetric inequality for real 1-cycles. This equivalence was proved by Gersten. (It follows, for example, from [3, Proposition 3.6, Theorem 5.1, and Theorem 5.7] (stated above).) This isoperimetric inequality for real cycles is a homological version of the usual combinatorial isoperimetric inequality for loops. We give a direct proof of the fact that the linear isoperimetric inequality for filling (usual) real 1-cycles with summable 2-chains implies hyperbolicity. Secondly, one needs to pick appropriate coefficients V. We take V to be the space of all boundaries of summable 2-chains in a cell complex with a nice G-action. Similar coefficients (but \mathbb{Z}-modules rather than \mathbb{R}-modules or \mathcal{C}-modules), and the universal cocycle associated with them were used by S. M. Gersten [7, Chapter 12] to introduce \mathbb{Z}-metabolic (or simply metabolic) groups.

2. Preliminaries

Let \mathbb{F} stand for one of the fields \mathbb{Q}, \mathbb{R} or \mathbb{C}, and let \mathbb{A} stand for one of the rings $\mathbb{Z}, \mathbb{Q}, \mathbb{R}$ or \mathbb{C}.

2.1. Abelian group norms

A normed abelian group A is an abelian group with an abelian group norm $|\cdot|: A \rightarrow \mathbb{R}_{+}$satisfying

- $\quad|a|=0$ if and only if $a=0$, and
- $\left|a+a^{\prime}\right| \leqslant|a|+\left|a^{\prime}\right|$
for all $a, a^{\prime} \in A$.

2.2. Norms

A normed vector space W over \mathbb{F} is a vector space with a norm $|\cdot|: W \rightarrow \mathbb{R}_{+}$satisfying

- $|w|=0$ if and only if $w=0$,
- $\left|w+w^{\prime}\right| \leqslant|w|+\left|w^{\prime}\right|$, and
- $|\alpha w|=|\alpha| \cdot|w|$
for all $w, w^{\prime} \in W$ and $\alpha \in \mathbb{F}$.
Of course, each norm on W is an abelian group norm, but not conversely.

2.3. $\boldsymbol{\ell}_{\mathbf{1}}$-norm

Let a free \mathbb{A}-module M have a preferred basis $\left\{m_{i}, i \in I\right\}$. The ℓ_{1}-norm $|\cdot|_{1}$ on M (with respect to this basis) is given by

$$
\left|\sum_{i \in I} \alpha_{i} m_{i}\right|_{1}:=\sum_{i \in I}\left|\alpha_{i}\right| .
$$

The ℓ_{1}-norm is an abelian group norm. Moreover, if M happens to be a vector space over \mathbb{F}, then it is a norm.

2.4. ℓ_{∞}-norm

Suppose that $\left(W,|\cdot|_{1}\right)$ and $\left(W^{\prime},|\cdot|\right)$ are normed vector spaces, where W is equipped with the ℓ_{1}-norm $\mid \cdot \|_{1}$ with respect to some preferred basis $\left\{w_{i}, i \in I\right\}$. For a linear map $\varphi: W \rightarrow W^{\prime}$, the ℓ_{∞}-norm of $\varphi,|\varphi|_{\infty}$, is the operator norm of φ, that is, $|\varphi|_{\infty}$ is the smallest number K (possibly infinity) such that $|\varphi(w)| \leqslant K|w|_{1}$ for each $w \in W$. One checks that

$$
|\varphi|_{\infty}=\sup _{i \in I}\left|\varphi\left(w_{i}\right)\right| .
$$

2.5. Cell complexes

By a cell complex we mean a combinatorial cell complex, that is, the one in which the boundary of each cell σ is cellulated and the gluing map of σ restricts to homeomorphisms on the open cells of this cellulation. In particular, each 2-cell can be viewed as a polygon.

We always put the path metric, which is induced by assigning length 1 to each edge, on the 1 skeleta of cell complexes. A cellular ball of radius r centred at a vertex x is the union of all closed cells whose vertices lie r-close to x.

If X is a cell complex and $C_{i}(X, \mathbb{A})$ is the space of cellular i-chains, we always give $C_{i}(X, \mathbb{A})$ the ℓ_{1}-norm with respect to the standard basis consisting of i-cells.

2.6. Filling norm for compactly supported chains

Gersten introduced this useful concept (sometimes also called 'standard norm').
If G is a finitely presentable group, then there exists a contractible cell complex X with a free cellular G-action such that the induced action on the 2 -skeleton of X is cocompact. In particular, the boundary homomorphism $\partial_{2}: C_{2}(X, \mathbb{A}) \rightarrow C_{1}(X, \mathbb{A})$ is bounded (with respect to the ℓ_{1}-norms in the domain and the target).

The filling norm $|\cdot|_{f c, \mathbb{A}}$ on the space $B_{1}(X, \mathbb{A})$ of 1-boundaries is given by

$$
|b|_{f c, \mathbb{A}}:=\inf \left\{|a|_{1} \mid a \in C_{2}(X, \mathbb{A}) \text { and } \partial a=b\right\} .
$$

In other words, $|\cdot|_{f c, \mathbb{A}}$ is the abelian group norm induced by the map $\partial_{2}: C_{2}(X, \mathbb{A}) \rightarrow C_{1}(X, \mathbb{A})$ on its image. One checks that $|\cdot|_{f c, \mathbb{Z}}$ is an abelian group norm, and $|\cdot|_{f c, \mathbb{Q}}$ and $|\cdot|_{f c, \mathbb{R}}$ are norms. (The condition $|w|=0$ if and only if $w=0$ holds because $|\cdot|_{f c, \mathbb{A}}$ dominates the ℓ_{1}-norm on $B_{1}(X, \mathbb{A})$.)

2.7. ℓ_{1}-completion

For X as above and $i=1,2$, let $C_{i}^{(1)}(X, \mathbb{F})$ be the set of all (absolutely) summable i-chains in X. Since the G-action on the 2 -skeleton of X is cocompact, the boundary homomorphism $\hat{\partial}_{i}$: $C_{i}^{(1)}(X, \mathbb{F}) \rightarrow C_{i-1}^{(1)}(X, \mathbb{F}), i=1,2$, is well defined and bounded with respect to the ℓ_{1}-norm in the domain and in the target. Also, $\hat{\partial}_{i}$ commutes with the G-action.

Write $B_{i}^{(1)}(X, \mathbb{F}):=\operatorname{Im} \hat{\partial}_{i+1}, Z_{i}^{(1)}(X, \mathbb{F}):=\operatorname{Ker} \hat{\partial}_{i}$.

2.8. Filling norm for summable chains

Now we consider 'the complete version' of the filling norm. The norm $|\cdot|_{f 1, \mathbb{F}}$ on the space $B_{1}^{(1)}(X, \mathbb{F})$ is given by

$$
|b|_{f 1, \mathbb{F}}:=\inf \left\{|a|_{1} \mid a \in C_{2}^{(1)}(X, \mathbb{F}) \text { and } \partial a=b\right\} .
$$

Again, since $\hat{\partial_{2}}: C_{2}^{(1)}(X, \mathbb{F}) \rightarrow C_{1}^{(1)}(X, \mathbb{F})$ is bounded, $|\cdot|_{f 1, \mathbb{F}}$ dominates $|\cdot|_{1}$ on $B_{1}^{(1)}(X, \mathbb{F})$ and therefore $|\cdot|_{f 1, \mathbb{F}}$ is indeed a norm.

2.9. Bounded cohomology

An $\mathbb{F} G$-module is called bounded if it is normed as a vector space over \mathbb{F} and G acts on it by linear operators of uniformly bounded norms. For a bounded $\mathbb{F} G$-module V, the bounded cohomology of G with coefficients in $V, H_{b}^{*}(G, V)$, is the homology of the cochain complex

$$
0 \longrightarrow C_{b}^{0}(G, V) \xrightarrow{\delta_{0}} C_{b}^{1}(G, V) \xrightarrow{\delta_{1}} C_{b}^{2}(G, V) \xrightarrow{\delta_{2}} \ldots,
$$

where

$$
\begin{equation*}
C_{b}^{i}(G, V):=\left\{\alpha: G^{i+1} \rightarrow V \mid \alpha \text { is a bounded } G \text {-map }\right\} \tag{1}
\end{equation*}
$$

and the coboundary map δ_{i} is defined by

$$
\begin{equation*}
\delta_{i} \alpha\left(\left[x_{0}, \ldots, x_{i+1}\right]\right):=\sum_{k=0}^{i+1}(-1)^{k} \alpha\left(\left[x_{0}, \ldots, \widehat{x_{k}}, \ldots, x_{i+1}\right]\right) . \tag{2}
\end{equation*}
$$

Here G^{i+1} is considered with the diagonal G-action by left multiplication, and by bounded G-map we mean a G-map whose image is bounded with respect to the norm on V.

Equivalently, $\quad C_{b}^{i}(G, V) \subseteq \operatorname{Hom}_{\mathbb{F} G}\left(C_{i}(G, \mathbb{F}), V\right)$ is the subspace of all $\mathbb{F} G$-morphisms $C_{i}(G, \mathbb{F}) \rightarrow V$ which are bounded as linear maps, where $C_{i}(G, \mathbb{F})$ is the space of all chains (that is, finite support functions) $G^{i+1} \rightarrow \mathbb{F}$ given the ℓ_{1}-norm with respect to the standard basis G^{i+1}. The coboundary homomorphism δ in $C_{b}^{i}(G, V)$ is the dual of the boundary morphism ∂ in $C_{i}(G, \mathbb{F})$. The spaces $C_{b}^{i}(G, V)$ are naturally given the ℓ_{∞}-norm dual to the ℓ_{1}-norm on $C_{i}(G, \mathbb{F})$.

3. Summable 1-chains

In this section we prove that certain summable 1-chains on a graph can be approximated in a good way by good compactly supported chains. These results (though not in full generality) will be needed in section 4 for isoperimetric inequalities. Essentially, we generalize the following theorem.
THEOREM 4 (Allcock-Gersten [1]). If Γ is a graph and f is a summable real-valued 1-cycle on Γ, then there is a countable coherent family C of simple circuits in Γ and a function $g: C \rightarrow[0, \infty)$ such that $f=\sum_{C} g(c) c$.
'Coherent' here means that, for any such $f,|f|_{1}=\sum_{C} g(c)|c|_{1}$.
Let Γ be a graph. As a part of the structure, we assign an orientation to each edge of Γ. Therefore 'a 1-chain on Γ ' is the same thing as 'a function on the edges of Γ '. The orientation on Γ determines the initial vertex te and the terminal vertex τe for each edge e. A directed path p in Γ is a sequence of edges $\left(e_{1}, \ldots, e_{n}\right)$ with $\tau e_{i}=\iota e_{i+1}$. The initial vertex ιp of the path p is ιe_{1} and the terminal vertex τp of p is τe_{n}. A directed path $\left(e_{1}, \ldots, e_{n}\right)$ is simple if the vertices $\iota e_{1}, \ldots, t e_{n}$ are all distinct. If T is a set of vertices in Γ, we say that p is a T-path if it is a directed path in Γ such that $\iota p, \tau p \in T$ or $\iota p=\tau p$ (in other words, the homological boundary of p is supported in T).

Let f be a(n absolutely) summable 1 -chain in Γ. For a vertex v in Γ, define

$$
\operatorname{Div}_{v}(f):=\sum_{l e=v} f(e)-\sum_{\tau e=v} f(e)
$$

where e stands for edges in Γ (with the fixed orientation).
By $\Gamma(f)$ we denote the same graph Γ but with an orientation on the edges chosen so that $f(e) \geqslant 0$ for each edge e. Let $\Gamma_{+}(f)$ be the minimal subgraph of $\Gamma(f)$ containing all the edges e with $f(e) \neq 0$ (that is, $f(e)>0$).

Lemma 5 Let Γ be a graph and T be a set of vertices in Γ. If h is a summable real 1 -chain such that $\operatorname{supp}(\partial h) \subseteq T$ and $\Gamma_{+}(h)$ contains no non-trivial simple T-paths, then $h=0$.
Proof. (cf. [1, Lemma 3.2]). Suppose to the contrary that $h \neq 0$, that is, there is an edge e^{\prime} in $\Gamma_{+}(h)$ (hence $h\left(e^{\prime}\right)>0$). Let Γ^{\prime} be the (non-empty) union of all directed paths (e_{1}, \ldots, e_{n}) in $\Gamma_{+}(h)$ with $e_{1}=e^{\prime}$. Then e^{\prime} is the only edge in Γ^{\prime} incident on e^{\prime} (otherwise there would be a non-trivial directed edge cycle in $\left.\Gamma^{\prime} \subseteq \Gamma_{+}(h)\right)$.
Case 1. We assume for the moment that Γ^{\prime} does not contain vertices from T, except possibly for ιe^{\prime}. Let h^{\prime} be the summable chain in Γ which coincides with h on Γ^{\prime} and takes the value 0 outside. If v is any vertex in Γ^{\prime} different from ιe^{\prime}, then $v \notin T \supseteq \operatorname{supp}(\partial f)$ and also, by definition, Γ^{\prime} contains all the edges e of $\Gamma_{+}(h)$ with $\iota e=v$, so

$$
0=\operatorname{Div}_{v}(h) \leqslant \operatorname{Div}_{v}\left(h^{\prime}\right)
$$

Obviously, for the vertex $t e^{\prime}$ the strong inequality holds:

$$
\begin{equation*}
0<h\left(e^{\prime}\right)=h^{\prime}\left(e^{\prime}\right)=\operatorname{Div}_{l e^{\prime}}\left(h^{\prime}\right) \tag{3}
\end{equation*}
$$

Since h^{\prime} is (absolutely) summable, rearranging the terms we get

$$
\begin{aligned}
0 & \leqslant \sum_{v \text { vertex in } \Gamma} \operatorname{Div}_{v}\left(h^{\prime}\right)=\sum_{v \text { vertex in } \Gamma}\left(\sum_{l e=v} h^{\prime}(e)-\sum_{\tau e=v} h^{\prime}(e)\right) \\
& =\sum_{e \text { edge in } \Gamma}\left(h^{\prime}(e)-h^{\prime}(e)\right)=0 .
\end{aligned}
$$

$\operatorname{Thus~}_{\operatorname{Div}}^{v}\left(h^{\prime}\right)=0$ for $a n y v$, which contradicts (3).
Case 2. If Γ^{\prime} contains s vertex v^{\prime} from T and $v^{\prime} \neq \imath e^{\prime}$, then do the same construction in the other direction: let $\Gamma^{\prime \prime}$ be the union of all the paths $\left(e_{1}, \ldots, e_{n}\right)$ in $\Gamma_{+}(h)$ with $e_{n}=e^{\prime}$. Now $\Gamma^{\prime \prime}$ does not contain a vertex from T, except possibly for τe^{\prime}, because otherwise we could connect such a vertex to v^{\prime} with a T-path in $\Gamma_{+}(h)$, which would contradict the assumptions of the lemma. So the same argument as in case 1 works for $\Gamma^{\prime \prime}$.

Each T-path p in $\Gamma(f)$ gives rise to an integer 1-chain in Γ which we also denote by p. In the following theorem, \mathbb{A} denotes \mathbb{Z}, \mathbb{Q}, or \mathbb{R}.

Theorem 6 Let Γ be a graph, T a set of vertices in Γ and f a summable 1-chain on Γ with coefficients in \mathbb{A} and $\operatorname{supp}(\partial f) \subseteq T$.
(a) There is a countable family $P=\left\{p_{1}, p_{2}, \ldots\right\}$ of simple T-paths in $\Gamma_{+}(f)$ and a sequence $\left\{\alpha_{i}\right\}$ in $[0, \infty) \cap \mathbb{A}$ such that $f=\sum_{i} \alpha_{i} p_{i}$ and $|f|_{1}=\sum_{i} \alpha_{i}\left|p_{i}\right|_{1}$.
(b) If the above f happens to have finite support, then P can be chosen to be finite.

This is a generalization of Theorem 4 and our proof of Theorem 6 follows the lines of [1, proof of Theorem 3.3] (cf. also [4, Lemma 3.6]), though we make the proof a bit more explicit without referring to the Zorn's lemma.

Proof. Since f is summable, $\Gamma_{+}(f)$ has only countably many edges. Let $P=\left\{p_{1}, p_{2}, \ldots\right\}$ be the (countable) set of all simple T-paths in $\Gamma_{+}(f)$. If the support of f is finite, then P is finite.

For two summable 1-chains f^{\prime} and $f^{\prime \prime}$ in Γ we will write $f^{\prime} \preceq f^{\prime \prime}$ if $f^{\prime}(e) \leqslant f^{\prime \prime}(e)$ for each edge in $\Gamma(f)$ (with the orientation defined in $\Gamma(f)$).

Let α_{1} be the (non-negative) real number which is maximal among those satisfying

$$
\alpha_{1} p_{1} \preceq f .
$$

Note that $\alpha_{1} \in[0, \infty) \cap \mathbb{A}$ since α_{1} coincides with the minimal value of f on the edges of p_{1}. Continue inductively: if $\alpha_{1}, \ldots, \alpha_{i-1}$ are constructed, let α_{i} be the maximal real number satisfying

$$
\alpha_{1} p_{1}+\cdots+\alpha_{i-1} p_{i-1}+\alpha_{i} p_{i} \preceq f .
$$

Inductively we see that each α_{i} is in $[0, \infty) \cap \mathbb{A}$.
Write $f_{i}:=\alpha_{1} p_{1}+\cdots+\alpha_{i} p_{i}$. Since all the chains are non-negative,

$$
\left|f_{i}\right|_{1}=\alpha_{1}\left|p_{1}\right|_{1}+\cdots+\alpha_{i}\left|p_{i}\right|_{1}
$$

The sequence f_{i} is monotone and bounded by the summable chain f, so the chain

$$
\bar{f}:=\sum_{i} \alpha_{i} p_{i}
$$

is well defined and satisfies

$$
|\bar{f}|_{1}:=\sum_{i} \alpha_{i}\left|p_{i}\right|_{1}
$$

Also, $0 \preceq \bar{f} \preceq f$, therefore $0 \preceq f-\bar{f} \preceq f$.

We prove now that $\Gamma_{+}(f-\bar{f})$ does not contain non-trivial simple T-paths. If it contained a non-trivial simple T-path p, then $\alpha p \preceq f-\bar{f} \preceq f$ for some $\alpha>0$. Therefore p would be a simple path in $\Gamma_{+}(f)$ as well, that is, $p=p_{i}$ for some i, and

$$
f_{i}+\alpha p_{i} \preceq \bar{f}+\alpha p_{i} \preceq f
$$

This contradicts the maximality in the definition of α_{i}.
Also $\operatorname{supp}(\partial(f-\bar{f})) \subseteq \operatorname{supp}(\partial f) \cup \operatorname{supp}(\partial \bar{f}) \subseteq T$ so, by Lemma 5, $f-\bar{f}=0$, that is, $f=\bar{f}=$ $\sum_{i} \alpha_{i} p_{i}$ and $|f|_{1}=|\bar{f}|_{1}=\sum_{i} \alpha_{i}\left|p_{i}\right|_{1}$. This finishes the proof of Theorem 6.

4. Linear isoperimetric inequalities

One could mean many different things by 'a linear homological isoperimetric inequality'. In this section we attempt to present a comprehensive list of possible interpretations and show that they are all equivalent to hyperbolicity. Most of this was shown by Gersten in various papers $[\mathbf{1 , 3 , 5}, 7]$; we just collect the statements into one theorem and sketch the proofs.

Theorem 7 Let G be a finitely presentable group G and let X be a simply connected cellular 2-complex with a free cocompact G action. Then the following statements are equivalent.
(0) G is hyperbolic.
(1) There exists $K_{1} \geqslant 0$ such that, for any $b \in B_{1}(X, \mathbb{Z}),|b|_{f c, \mathbb{Z}} \leqslant K_{1}|b|_{1}$.
(1') There exists $K_{1}^{\prime} \geqslant 0$ such that for any $b \in B_{1}(X, \mathbb{Z})$ there exists $a \in C_{2}(X, \mathbb{Z})$ with $\partial a=b$ and $|a|_{1} \leqslant K_{1}^{\prime}|b|_{1}$.
(2) There exists $K_{2} \geqslant 0$ such that, for any $b \in B_{1}(X, \mathbb{Z}),|b|_{f c, \mathbb{Q}} \leqslant K_{2}|b|_{1}$.
(3) There exists $K_{3} \geqslant 0$ such that, for any $b \in B_{1}(X, \mathbb{Q}),|b|_{f c, \mathbb{Q}} \leqslant K_{3}|b|_{1}$.
(3') There exists $K_{3}^{\prime} \geqslant 0$ such that for any $b \in B_{1}(X, \mathbb{Q})$ there exists $a \in C_{2}(X, \mathbb{Q})$ with $\partial a=b$ and $|a|_{1} \leqslant K_{3}^{\prime}|b|_{1}$.
(4) There exists $K_{4} \geqslant 0$ such that, for any $b \in B_{1}(X, \mathbb{R}),|b|_{f c, \mathbb{R}} \leqslant K_{4}|b|_{1}$.
(4') There exists $K_{4}^{\prime} \geqslant 0$ such that for any $b \in B_{1}(X, \mathbb{R})$ there exists $a \in C_{2}(X, \mathbb{R})$ with $\partial a=b$ and $|a|_{1} \leqslant K_{4}^{\prime}|b|_{1}$.
(5) There exists $K_{5} \geqslant 0$ such that, for any $b \in B_{1}(X, \mathbb{R}) \subseteq B_{1}^{(1)}(X, \mathbb{R}),|b|_{f 1, \mathbb{R}} \leqslant K_{5}|b|_{1}$.
(6) There exists $K_{6} \geqslant 0$ such that, for any $b \in B_{1}^{(1)}(X, \mathbb{R}),|b|_{f 1, \mathbb{R}} \leqslant K_{6}|b|_{1}$.
(6') There exists $K_{6}^{\prime} \geqslant 0$ such that, for any $b \in B_{1}^{(1)}(X, \mathbb{R})$ there exists $a \in C_{2}^{(1)}(X, \mathbb{R})$ with $\hat{\partial}_{2} a=b$ and $|a|_{1} \leqslant K_{6}^{\prime}|b|_{1}$.
(7) There exists $K_{7} \geqslant 0$ such that, for any $z \in Z_{1}^{(1)}(X, \mathbb{R}),|z|_{f 1, \mathbb{R}} \leqslant K_{7}|z|_{1}$.
(7') There exists $K_{7}^{\prime} \geqslant 0$ such that for any $z \in Z_{1}^{(1)}(X, \mathbb{R})$ there exists $a \in C_{2}^{(1)}(X, \mathbb{R})$ with $\partial a=z$ and $|a|_{1} \leqslant K_{7}^{\prime}|z|_{1}$.
(8) There exists $K_{8} \geqslant 0$ such that, for any $b \in B_{1}(X, \mathbb{C}),|b|_{f c, \mathbb{C}} \leqslant K_{8}|b|_{1}$.
(8') There exists $K_{8}^{\prime} \geqslant 0$ such that for any $b \in B_{1}(X, \mathbb{C})$ there exists $a \in C_{2}(X, \mathbb{C})$ with $\partial a=b$ and $|a|_{1} \leqslant K_{8}^{\prime}|b|_{1}$.
(9) There exists $K_{9} \geqslant 0$ such that, for any $b \in B_{1}(X, \mathbb{C}) \subseteq B_{1}^{(1)}(X, \mathbb{C}),|b|_{f 1, \mathbb{C}} \leqslant K_{9}|b|_{1}$.
(10) There exists $K_{10} \geqslant 0$ such that, for any $b \in B_{1}^{(1)}(X, \mathbb{C}),|b|_{f 1, \mathbb{C}} \leqslant K_{10}|b|_{1}$.
(10') There exists $K_{10}^{\prime} \geqslant 0$ such that for any $b \in B_{1}^{(1)}(X, \mathbb{C})$ there exists $a \in C_{2}^{(1)}(X, \mathbb{C})$ with $\hat{\partial}_{2} a=b$ and $|a|_{1} \leqslant K_{10}^{\prime}|b|_{1}$.
(11) There exists $K_{11} \geqslant 0$ such that, for any $z \in Z_{1}^{(1)}(X, \mathbb{C}),|z|_{f 1, \mathbb{C}} \leqslant K_{11}|z|_{1}$.
(11') There exists $K_{11}^{\prime} \geqslant 0$ such that for any $z \in Z_{1}^{(1)}(X, \mathbb{C})$ there exists $a \in C_{2}^{(1)}(X, \mathbb{C})$ with $\partial a=z$ and $|a|_{1} \leqslant K_{11}^{\prime}|z|_{1}$.

Remark. Later in the paper only implications $(5) \Rightarrow(0)$ and $(9) \Rightarrow(0)$ will be used. The author's contribution here is implication $(5) \Rightarrow(0)$ and the implications involving complex numbers. This article seems to be the first place where complex numbers are used for isoperimetric inequalities.

Sketch of proof. Equivalences $(\mathbf{1}) \Leftrightarrow\left(\mathbf{1}^{\prime}\right),(\mathbf{3}) \Leftrightarrow\left(\mathbf{3}^{\prime}\right),(\mathbf{4}) \Leftrightarrow\left(\mathbf{4}^{\prime}\right),(\mathbf{6}) \Leftrightarrow\left(\mathbf{6}^{\prime}\right),(\mathbf{7}) \Leftrightarrow\left(\mathbf{7}^{\prime}\right)(\mathbf{8}) \Leftrightarrow\left(\mathbf{8}^{\prime}\right)$, $(\mathbf{1 0}) \Leftrightarrow\left(\mathbf{1 0}^{\prime}\right),(\mathbf{1 1}) \Leftrightarrow\left(\mathbf{1 1}^{\prime}\right)$ follow from the definition of the filling norm. (In each case, K^{\prime} can be taken to be $K+1$.)
$(\mathbf{0}) \Rightarrow\left(\mathbf{1}^{\prime}\right)$ Hyperbolic groups are defined as those having a linear isoperimetric inequality for filling edge-loops with combinatorial disks. Each $b \in B_{1}(X, \mathbb{Z})$ is a sum of such loops (viewed as chains). Let a be the sum of fillings for these loops. (See [6], where the converse is proved.)
$\mathbf{(1)} \Rightarrow \mathbf{(2)}$ is obvious because $|\cdot|_{f c, \mathbb{Q}} \leqslant|\cdot|_{f c, \mathbb{Z}}$ on $B_{1}(X, \mathbb{Z})$. Similarly, (4) $\Rightarrow(\mathbf{5})$.
$(\mathbf{2}) \Rightarrow(\mathbf{3})$ Let $\Gamma:=X^{(1)}$ and $b \in B_{1}(X, \mathbb{Q})$. Since b is a summable cocycle, being the boundary of a summable 2-chain, it follows b: that Theorem $4 b=\sum_{C} g(c) c$ for some $g: C \rightarrow[0, \infty)$. The main point here is that the elements of C are integer 1 -cycles in X. Also, since g is rational, g can be chosen to take rational values (see Theorem 6 for the proof). Fill each $c \in C$ by an integer 2-chain a_{c} with a linear isoperimetric inequality; then $\sum_{C} g(c) a_{c}$ is a rational filling of b with a linear isoperimetric inequality.
$\left(\mathbf{3}^{\prime}\right) \Rightarrow\left(\mathbf{4}^{\prime}\right)$ and $(\mathbf{5}) \Rightarrow(7)$ are analogous to $(2) \Rightarrow(3)$. (See also, [1, Proposition 3.6] for the proof of (1) $\Leftrightarrow(3) \Leftrightarrow(4)$.)
$\left(7^{\prime}\right) \Rightarrow\left(6^{\prime}\right),(6) \Rightarrow(5)$ are obvious.
$\left(\mathbf{4}^{\prime}\right) \Rightarrow\left(\mathbf{8}^{\prime}\right)$ We need to pass from \mathbb{R} to \mathbb{C}. If $b \in B_{1}(X, \mathbb{C})$, then $\operatorname{Re} b$ and $\operatorname{Im} b$ lie in $b \in B_{1}(X, \mathbb{R})$, so, by (4'), there exist $a, a^{\prime} \in C_{2}(X, \mathbb{R})$ with $\partial a=\operatorname{Re} b, \partial a^{\prime}=\operatorname{Im} b,|a|_{1} \leqslant K_{4}^{\prime}|\operatorname{Re} b|_{1},\left|a^{\prime}\right|_{1} \leqslant$ $K_{4}^{\prime}|\operatorname{Im} b|_{1}$. Then $\partial\left(a+i a^{\prime}\right)=b$ and

$$
\left|a+a^{\prime}\right|_{1} \leqslant K_{4}^{\prime}|\operatorname{Re} b|_{1}+K_{4}^{\prime}|\operatorname{Im} b|_{1} \leqslant 2 K_{4}^{\prime}|b|_{1}
$$

so we set $K_{8}^{\prime}:=2 K_{4}^{\prime}$.
$\left(\mathbf{8}^{\prime}\right) \Rightarrow\left(\mathbf{4}^{\prime}\right)$ We pass from \mathbb{C} to \mathbb{R}. Each $b \in B_{1}(X, \mathbb{R})$ can be viewed as an element of $B_{1}(X, \mathbb{C})$, therefore, by (8^{\prime}), there exists $a \in C_{2}(X, \mathbb{C})$ with with $\partial a=b$ and $|a|_{1} \leqslant K_{8}^{\prime}|b|_{1}$. Let \bar{a} be the complex conjugate of a. Since b is real, $\partial(\operatorname{Re} a)=\operatorname{Re} b=b$ and $|\operatorname{Re} a|_{1} \leqslant|a|_{1} \leqslant K_{8}^{\prime}|b|_{1}$, so we set $K_{4}^{\prime}:=K_{8}^{\prime}$.
$(5) \Leftrightarrow(9),\left(\mathbf{6}^{\prime}\right) \Leftrightarrow\left(\mathbf{1 0}^{\prime}\right),\left(\mathbf{7}^{\prime}\right) \Leftrightarrow\left(\mathbf{1 1}^{\prime}\right)$ These implications are similar to $\left(4^{\prime}\right) \Leftrightarrow\left(8^{\prime}\right)$.
We devote the rest of this section to the proof of the remaining implication (5) $\Rightarrow \mathbf{(0)}$. It follows immediately from the following proposition (cf. [3, Proposition 5.4])
Proposition 8 Let G and X be as in the hypotheses of Theorem 7 and suppose G is not hyperbolic. Then there exist $C>0$ and a sequence of geodesic quadrilaterals w in $X^{(1)}$ with

$$
|w|_{1} \rightarrow \infty \quad \text { and } \quad|w|_{f 1, \mathbb{R}} \geqslant C\left(|w|_{1}\right)^{2}
$$

Here, abusing notation, we identify the quadrilateral w and the corresponding integral 1-chain.
Proof. We modify the techniques of [2], [3] which in turn used a modification of Ol'shanskii's method of layers [12].

Each 2-cell in X is a polygon whose sides are glued to edges in $X^{(1)}$. Let M be the maximal number of sides over all 2-cells in X. In particular, all combinatorial boundaries of 2-cells in X have diameter at most M, and also, for any 2 -chain a in X,

$$
\begin{equation*}
|\partial a|_{1} \leqslant M|a|_{1} . \tag{4}
\end{equation*}
$$

If G is not hyperbolic, Ol'shanskii shows that there are arbitrarily thick geodesic quadrilaterals in $X^{(1)}$, and Gersten states more precisely that (see [3, Proposition 5.2] in which we make the substitution $t=8 M r$) there exist

- a sequence of integers r tending to infinity,
- a geodesic quadrilateral $w=w(r)$ for each r,
- a (geodesic) side S in each w, and
- a subinterval $[x, y] \subseteq S$ with the midpoint z
such that
- the length of $[x, y]$ is $4 M r$,
- the distance from z to the sides of w other than S is at least $4 M r$, and
- the perimeter of w is at most $80 M r$.

This last property implies that

$$
\begin{equation*}
|w|_{1} \leqslant 80 M r . \tag{5}
\end{equation*}
$$

Since the interval $[x, y]$ does not intersect other sides of the quadrilateral,

$$
|w|_{1} \geqslant 4 M r \rightarrow \infty \quad \text { as } \quad r \rightarrow \infty .
$$

For each positive integer $k \leqslant r$, let B_{k} be the simplicial ball of radius $4 M k$ centred at z. If a is any summable chain with $\partial a=w$, denote by a_{k} the restriction of a to (the 2-cells of) $B_{k} \backslash B_{k-1}$ (with $a_{k}=0$ outside). Let s_{k} and t_{k} be the two points on $[x, y]$ which are at distance $4 M k-2 M$ from z (see Fig. 1), and

$$
\begin{aligned}
& A_{k}:=\{v \in[x, y] \mid 4 M(k-1) \leqslant d(z, v) \leqslant 4 M k-2 M\}, \\
& A_{k}^{\prime}:=\{v \in[x, y] \mid 4 M k-2 M \leqslant d(z, v) \leqslant 4 M k\} .
\end{aligned}
$$

Fig. 1 The filling a of b.

Here ∂a_{k} is a 1 -cycle which takes the value 1 on the edges of $[x, y]$ incident on s_{k} and t_{k} (since these edges are 'deep inside' $B_{k} \backslash B_{k-1}$). Also, ∂a_{k} splits as the sum of a 1-chain q_{k} supported in

$$
\left\{M-\text { neighbourhood of } B_{k-1}\right\} \cup A_{k},
$$

and a 1-chain q_{k}^{\prime} supported in

$$
\left\{M-\text { neighbourhood of } \overline{X \backslash B_{k}}\right\} \cup A_{k}^{\prime} .
$$

These two supports intersect only in $T:=\left\{s_{k}, t_{k}: 0<k \leqslant r\right\}$, and the above observation implies that

$$
\begin{equation*}
\partial q_{k}=t_{k}-s_{k} \quad \text { and } \quad \partial q_{k}^{\prime}=s_{k}-t_{k} \tag{6}
\end{equation*}
$$

By Theorem 6, each q_{k} splits as a (finite) linear combination of T-paths

$$
q_{k}=\sum_{i} \alpha_{i} p_{i}
$$

such that

$$
\alpha_{i} \geqslant 0 \quad \text { and } \quad\left|q_{k}\right|_{1}=\sum_{i} \alpha_{i}\left|p_{i}\right|_{1}
$$

Those T-paths p_{j} which have non-trivial boundary must be of length at least $d\left(s_{k}, t_{k}\right) \geqslant 8 M k-4 M$, and (6) says that $\sum_{j} \alpha_{j} \geqslant 1$, so

$$
\left|q_{k}\right|_{1}=\sum_{i} \alpha_{i}\left|p_{i}\right|_{1} \geqslant \sum_{j} \alpha_{j}(8 M k-4 M) \geqslant 8 M k-4 M
$$

The same holds for q_{k}^{\prime}, hence

$$
\left|\partial a_{k}\right|_{1}=\left|q_{k}\right|_{1}+\left|q_{k}^{\prime}\right|_{1} \geqslant 2(8 M k-4 M)=16 M k-4 M .
$$

By (4),

$$
\left|a_{k}\right|_{1} \geqslant \frac{1}{M}\left|\partial a_{k}\right|_{1} \geqslant 16 k-4
$$

and since the chains a_{k} have disjoint supports,

$$
|a|_{1} \geqslant \sum_{k=1}^{r}\left|a_{k}\right|_{1} \geqslant \sum_{k=1}^{r}(16 k-4)=16 \frac{r(r+1)}{2}-4 r \geqslant 8 r^{2} .
$$

Then, by (5),

$$
|a|_{1} \geqslant 8\left(\frac{|w|_{1}}{80 M}\right)^{2}=\frac{1}{800 M^{2}} \cdot\left(|w|_{1}\right)^{2}
$$

Since this is true for any summable filling a of w, it follows that

$$
|w|_{f 1, \mathbb{R}} \geqslant \frac{1}{800 M^{2}} \cdot\left(|w|_{1}\right)^{2}
$$

so we put $C:=\frac{1}{800 \mathrm{M}^{2}}$. Proposition 8 and Theorem 7 are proved.

5. The characterization

In this section we characterize hyperbolic groups by bounded cohomology.
Let G be a finitely presentable group and let $\mathcal{M}(G)$ be one of the following ten classes of modules.

- $\mathcal{M}_{1}(G)$, the class of bounded $\mathbb{Q} G$-modules. A $\mathbb{Q} G$-module is called bounded if it is normed as a vector space over \mathbb{Q} and G acts on it by linear operators of uniformly bounded norms.
- $\mathcal{M}_{2}(G)$, the class of isometric $\mathbb{Q} G$-modules. A $\mathbb{Q} G$-module is called isometric if it is bounded and, moreover, the G-action preserves its norm.
- $\mathcal{M}_{3}(G)$, analogously, the class of bounded $\mathbb{R} G$-modules.
- $\mathcal{M}_{4}(G)$, analogously, the class of isometric $\mathbb{R} G$-modules.
- $\mathcal{M}_{5}(G)$, analogously, the class of bounded Banach $\mathbb{R} G$-modules, that is, bounded $\mathbb{R} G$-modules which are Banach spaces with respect to their norms.
- $\mathcal{M}_{6}(G)$, analogously, the class of isometric Banach $\mathbb{R} G$-modules.
- $\mathcal{M}_{7}(G)$, the class of bounded $\mathbb{C} G$-modules.
- $\mathcal{M}_{8}(G)$, the class of isometric $\mathbb{C} G$-modules.
- $\mathcal{M}_{9}(G)$, analogously, the class of bounded Banach $\mathbb{C} G$-modules.
- $\mathcal{M}_{10}(G)$, the class of isometric Banach $\mathbb{C} G$-modules.

Obviously, $\mathcal{M}_{10}(G) \subseteq \mathcal{M}(G) \subseteq \mathcal{M}_{1}(G)$ for each such $\mathcal{M}(G)$.
As promised in the introduction, Theorem 3 is stated more precisely as follows.
Theorem 9 Let G be a finitely presentable group, and $\mathcal{M}(G)$ one of the classes $\mathcal{M}_{1}(G)$ to $\mathcal{M}_{10}(G)$ described above. Then the following statements are equivalent.
(a) G is hyperbolic.
(b) The map $H_{b}^{2}(G, V) \rightarrow H^{2}(G, V)$ is surjective for any $V \in \mathcal{M}(G)$.
(c) The map $H_{b}^{i}(G, V) \rightarrow H^{i}(G, V)$ is surjective for any $i \geqslant 2$ and any $V \in \mathcal{M}(G)$.

Proof. $(a) \Rightarrow(c)$ was shown in [9] for the largest class $\mathcal{M}_{1}(G)$. Property (c) for $\mathcal{M}_{1}(G)$ implies the same property for each of the classes $\mathcal{M}_{1}(G)$ to $\mathcal{M}_{10}(G)$. The implication $(c) \Rightarrow(b)$ is obvious. It only remains to prove $(b) \Rightarrow(a)$ for the class $\mathcal{M}_{10}(G)$. Below we present the proof of $(b) \Rightarrow(a)$ for class $\mathcal{M}_{6}(G)$, since real coefficients are often used. To show $(b) \Rightarrow(a)$ for class $\mathcal{M}_{10}(G)$ the reader would just need to replace \mathbb{R} by \mathbb{C} everywhere.

5.1. Proof of $(b) \Rightarrow(a)$ for class $\mathcal{M}_{6}(G)$

Since G is finitely presentable, there exists a contractible cell complex X with a free cellular G action such that the induced action on the 2 -skeleton of X is cocompact. We take V to be $B_{1}^{(1)}(X, \mathbb{R})$ with the filling norm $|\cdot|_{f 1, \mathbb{R}}$ which we denote for simplicity by $|\cdot|_{f}$. The vector space V is Banach as the quotient of the Banach space $C_{2}^{(1)}(X, \mathbb{R})$ by the (closed) kernel of $\hat{\partial}_{2}: C_{2}^{(1)}(X, \mathbb{R}) \rightarrow$ $C_{1}^{(1)}(X, \mathbb{R})$. In particular, $V \in \mathcal{M}_{6}(G)$.

Let Y be the geometric realization of the homogeneous bar-construction for G, that is, Y is the simplicial complex whose k-simplices are labelled by ordered $(k+1)$-tuples $\left[x_{0}, \ldots, x_{k}\right.$] of elements of the group G, and each simplex labeled $\left[x_{0}, \ldots, \widehat{x_{i}}, \ldots, x_{k}\right]$ is identified with the i th face of $\left[x_{0}, \ldots, x_{k}\right]$. The action of G on Y is diagonal:

$$
g \cdot\left[x_{0}, \ldots, x_{k}\right]:=\left[g \cdot x_{0}, \ldots, g \cdot x_{k}\right]
$$

Let \mathcal{C}_{*}^{X} and \mathcal{C}_{*}^{Y} be the augmented chain complexes

$$
\ldots \longrightarrow C_{2}(X, \mathbb{R}) \xrightarrow{\partial_{2}} C_{1}(X, \mathbb{R}) \xrightarrow{\partial_{1}} C_{0}(X, \mathbb{R}) \xrightarrow{\epsilon} \mathbb{R} \longrightarrow 0
$$

and

$$
\ldots \longrightarrow C_{2}(Y, \mathbb{R}) \xrightarrow{\partial_{2}} C_{1}(Y, \mathbb{R}) \xrightarrow{\partial_{1}} C_{0}(Y, \mathbb{R}) \xrightarrow{\epsilon} \mathbb{R} \longrightarrow 0,
$$

respectively. Both X and Y are contractible, hence \mathcal{C}_{*}^{X} and \mathcal{C}_{*}^{Y} are acyclic. Both \mathcal{C}_{*}^{X} and \mathcal{C}_{*}^{Y} have free $\mathbb{R} G$-modules in each non-negative dimension. Also \mathcal{C}_{i}^{X} is finitely generated as an $\mathbb{R} G$-module for $i=0,1,2$.

Obviously, \mathcal{C}_{*}^{X} and \mathcal{C}_{*}^{Y} coincide in the negative dimensions. By the standard uniqueness of resolutions property, there exist homotopy equivalences $\varphi_{*}: \mathcal{C}_{*}^{Y} \rightarrow \mathcal{C}_{*}^{X}$ and $\psi_{*}: \mathcal{C}_{*}^{X} \rightarrow \mathcal{C}_{*}^{Y}$ which are identities in dimension -1 . It is important that φ_{*} and ψ_{*} are chain maps in the category of $\mathbb{R} G$-modules, in particular, for each i, φ_{i} and ψ_{i} are linear maps commuting with the G-action.

For the dual cochain complexes

$$
\mathcal{C}_{X}^{i}:=C^{*}(X, V)=\operatorname{Hom}_{\mathbb{R} G}\left(\mathcal{C}_{i}^{Y}, V\right) \quad \text { and } \quad \mathcal{C}_{Y}^{i}:=C^{*}(Y, V)=\operatorname{Hom}_{\mathbb{R} G}\left(\mathcal{C}_{i}^{Y}, V\right)
$$

and the dual maps

$$
\varphi^{*}: \mathcal{C}_{X}^{*} \rightarrow \mathcal{C}_{Y}^{*} \quad \text { and } \quad \psi^{*}: \mathcal{C}_{Y}^{*} \rightarrow \mathcal{C}_{X}^{*}
$$

the cochain map $\psi^{*} \circ \varphi^{*}$ is homotopic to the identity map, hence $\psi^{*} \circ \varphi^{*}$ induces the identity map on cohomology $H^{*}(G, V)$ in the positive dimensions.

The universal cocycle in \mathcal{C}_{X}^{2} is the 2-cochain $u: \mathcal{C}_{2}^{X} \rightarrow V$ which coincides with the composition

$$
C_{2}(X, \mathbb{R}) \xrightarrow{\partial_{2}} B_{1}(X, \mathbb{R}) \hookrightarrow B_{1}^{(1)}(X, \mathbb{R}) .
$$

One checks that u is indeed a cocycle. By the above observations,

$$
\begin{equation*}
u=\left(\psi^{2} \circ \varphi^{2}\right)(u)+\delta v \tag{7}
\end{equation*}
$$

for some 1-cochain $v: \mathcal{C}_{1}^{X} \rightarrow V$.
Since $\varphi^{2}(u)$ is a cocycle in \mathcal{C}_{Y}^{2} and the map $H_{b}^{2}(G, V) \rightarrow H^{2}(G, V)$ is surjective by the assumption,

$$
\begin{equation*}
\varphi^{2}(u)=u^{\prime}+\delta v^{\prime} \tag{8}
\end{equation*}
$$

for a 1-cochain $v^{\prime} \in \mathcal{C}_{Y}^{1}$ and a bounded 2-cocycle $u^{\prime} \in \mathcal{C}_{Y}^{2}$, that is,

$$
\begin{equation*}
\left|u^{\prime}\right|_{\infty}<\infty . \tag{9}
\end{equation*}
$$

The above information is demonstrated by the diagrams

$a, b \in \mathcal{C}_{*}^{X}$	$=$	$C_{*}(X, \mathbb{R})$	$u, v \in \mathcal{C}_{X}^{*}$	$=$	$C^{*}(X, V)$
$\left.\varphi_{*}\right\|_{\downarrow} \psi_{*}$			$\varphi^{*} \mid \hat{\wedge} \psi^{*}$		
\mathcal{C}_{*}^{Y}	$=$	$C_{*}(Y, \mathbb{R})$	$u^{\prime}, v^{\prime} \in \mathcal{C}_{Y}^{*}$	$=$	$C^{*}(Y, V)$.

We also have the standard pairings $\langle\cdot, \cdot\rangle: \mathcal{C}_{X}^{i} \oplus \mathcal{C}_{i}^{X} \rightarrow V$ and $\langle\cdot, \cdot\rangle: \mathcal{C}_{Y}^{i} \oplus \mathcal{C}_{i}^{Y} \rightarrow V$.
Fix any vertex y in Y (that is, $y \in G$). For each 1-chain $b=\sum_{y_{0}, y_{1} \in G} \beta_{\left[y_{0}, y_{1}\right]}\left[y_{0}, y_{1}\right]$ in Y, the cone over b with vertex y is the 2-chain

$$
[y, b]:=\sum_{y_{0}, y_{1} \in G} \beta_{\left[y_{0}, y_{1}\right]}\left[y, y_{0}, y_{1}\right] .
$$

If b happens to be a cycle, then $\partial[y, b]=b$. Obviously,

$$
|[y, b]|_{1}=|b|_{1} .
$$

In other words, $[y, b]$ is a filling of b in Y, and the above formula says that these fillings satisfy a linear isoperimetric inequality in Y. We want the same property in X to show hyperbolicity, so we will use the maps φ^{*} and ψ^{*} to 'transfer' the linear isoperimetric inequality from Y to X using the fact that the universal cocycle is cohomologous to a bounded cocycle.

Note also that if α is a cocycle in \mathcal{C}_{Y}^{i} and $c \in \mathcal{C}_{i}^{Y}$, then $c-[y, \partial c]$ is a cycle, hence a boundary, so $\langle\alpha, c-[y, \partial c]\rangle=0$ and

$$
\begin{equation*}
\langle\alpha, c\rangle=\langle\alpha,[y, \partial c]\rangle \tag{10}
\end{equation*}
$$

Now with the above setup we can finish the proof of Theorem 9. Pick any 1-boundary $b \in$ $B_{1}(X, \mathbb{R})$ and any 2-chain a with $\partial a=b$. We will show that $|b|_{f} \leqslant K|b|_{1}$ for some uniform constant K, therefore G will be hyperbolic by implication $(5) \Rightarrow(0)$ in Theorem 7. (By implication $(9) \Rightarrow(0)$ in case of complex coefficients.)

By equality (7),

$$
b=\partial a=\langle u, a\rangle=\left\langle\left(\psi^{2} \circ \varphi^{2}\right)(u)+\delta v, a\right\rangle=\left\langle\left(\psi^{2} \circ \varphi^{2}\right)(u), a\right\rangle+\langle v, b\rangle .
$$

Since $\varphi^{2}(u)$ is a cocycle, and using (10) and (8),

$$
\begin{aligned}
& \left\langle\left(\psi^{2} \circ \varphi^{2}\right)(u), a\right\rangle=\left\langle\varphi^{2}(u), \psi_{2}(a)\right\rangle=\left\langle\varphi^{2}(u),\left[y, \partial\left(\psi_{2}(a)\right)\right]\right\rangle \\
& =\left\langle\varphi^{2}(u),\left[y, \psi_{1}(b)\right]\right\rangle=\left\langle u^{\prime}+\delta v^{\prime},\left[y, \psi_{1}(b)\right]\right\rangle=\left\langle u^{\prime},\left[y, \psi_{1}(b)\right]\right\rangle+\left\langle v^{\prime}, \partial\left[y, \psi_{1}(b)\right]\right\rangle \\
& =\left\langle u^{\prime},\left[y, \psi_{1}(b)\right]\right\rangle+\left\langle v^{\prime}, \psi_{1}(b)\right\rangle=\left\langle u^{\prime},\left[y, \psi_{1}(b)\right]\right\rangle+\left\langle\psi^{1}\left(v^{\prime}\right), b\right\rangle .
\end{aligned}
$$

So, combining the above two formulae,

$$
\begin{aligned}
b & =\left\langle u^{\prime},\left[y, \psi_{1}(b)\right]\right\rangle+\left\langle\psi^{1}\left(v^{\prime}\right)+v, b\right\rangle, \\
|b|_{f} & \leqslant\left|\left\langle u^{\prime},\left[y, \psi_{1}(b)\right]\right\rangle\right|_{f}+\left|\left\langle\psi^{1}\left(v^{\prime}\right)+v, b\right\rangle\right|_{f} \\
& \leqslant\left|u^{\prime}\right|_{\infty} \cdot\left|\left[y, \psi_{1}(b)\right]\right|_{1}+\left|\psi^{1}\left(v^{\prime}\right)+v\right|_{\infty} \cdot|b|_{1} \\
& =\left|u^{\prime}\right|_{\infty} \cdot\left|\psi_{1}(b)\right|_{1}+\left|\psi^{1}\left(v^{\prime}\right)+v\right|_{\infty} \cdot|b|_{1} \\
& \leqslant\left(\left|u^{\prime}\right|_{\infty} \cdot\left|\psi_{1}\right|_{\infty}+\left|\psi^{1}\left(v^{\prime}\right)+v\right|_{\infty}\right) \cdot|b|_{1} .
\end{aligned}
$$

This will give the desired linear isoperimetric inequality once we prove that all the norms in the parentheses are finite.

The cochain u^{\prime} is bounded by definition (by a constant depending only on the choice of G and X, see (9)). The maps $\psi_{1}: \mathcal{C}_{1}^{X} \rightarrow \mathcal{C}_{1}^{Y}$ and $\psi^{1}\left(v^{\prime}\right)+v: \mathcal{C}_{1}^{X} \rightarrow V$ are both linear maps commuting with the G-action. Their boundedness (by constants depending only on G and X) is immediate from the following simple observation which deserves the status of a lemma.

Lemma 10 Let $\left(W,|\cdot|_{1}\right)$ and $\left(W^{\prime},|\cdot|\right)$ be two normed vector spaces over \mathbb{R}, where $|\cdot|_{1}$ is the ℓ_{1}-norm on W with respect to some basis. Suppose a group G acts on both W and W^{\prime} such that

- on W it permutes the basis so that there are only finitely many orbits of basis elements, and
- on W^{\prime} it preserves the norm $|\cdot|$.

Then, if $f: W \rightarrow W^{\prime}$ is a linear map commuting with the G-action, then f is bounded, that is, $|f|_{\infty}<\infty$.

Proof. If w_{1} and w_{2} are two basis elements of W in the same G-orbit, that is, $w_{1}=g \cdot w_{2}$, then

$$
\left|f\left(w_{1}\right)\right|=\left|f\left(g \cdot w_{2}\right)\right|=\left|g \cdot f\left(w_{2}\right)\right|=\left|f\left(w_{2}\right)\right| .
$$

Since there are only finitely many G-orbits of basis elements in $W,|f(\cdot)|$ takes only finitely many values on the basis elements, hence $|f|_{\infty}<\infty$. This proves Lemma 10 and Theorem 9.

Acknowledgements

The author thanks Steve Gersten and Vladimir Troitsky for helpful discussions, and very much appreciates the hospitality of the University of Melbourne and the Max-Planck-Institut für Mathematik in Bonn in 1998-99.

References

1. D. J. Allcock and S. M. Gersten, A homological characterization of hyperbolic groups, Invent. Math. 135 (1999), 723-742.
2. J. Fletcher, Ph.D. Thesis, University of Utah, 1998.
3. S. M. Gersten, A Cohomological Characterization of Hyperbolic Groups, Preprint available at http://www.math.utah.edu/~gersten.
4. S. M. Gersten, Distortion and ℓ_{1}-homology, Proceedings of the 4th International Conference on the Theory of Groups held at Pusan National University, Pusan, August 10-16, (Eds Y. G. Baik, D. L. Johnson, and A. C. Kim), Gruyter, New York, (1998), 133-164.
5. S. M. Gersten, A Note on Cohomological Vanishing and the Linear Isoperimetric Inequality, Preprint available at http://www.math.utah.edu/~gersten.
6. S. M. Gersten, Subgroups of word hyperbolic groups in dimension 2, J. London Math. Soc. 54 (1996), 261-283.
7. S. M. Gersten, Cohomological lower bounds for isoperimetric functions on groups, Topology 37 (1998), 1031-1072.
8. B. E. Johnson, Cohomology in Banach algebras, Memoir, 127, American Mathematical Society, Providence, 1972.
9. I. Mineyev, Straightening and bounded cohomology of hyperbolic groups, Geom. Funct. Anal. 11 (2001), 807-839.
10. I. Mineyev, Higher dimensional isoperimetric inequalities in hyperbolic groups, Math. Z. 233 (2000), 327-345.
11. G. A. Noskov, Bounded cohomology of discrete groups with coefficients, Leningrad Math. J. (1991), 1067-1084.
12. A. Y. Ol'shanskii, Hyperbolicity of groups with subquadratic isoperimetric inequality, Internat. J. Algebra Comput. 1 (1991), 281-289.

[^0]: ${ }^{\dagger}$ E-mail: mineyev@math.usouthal.edu; http://www.math.usouthal.edu/~mineyev/math/

